The Ellipse

1) State the parametric equations of the ellipse and derive the Cartesian equation for the ellipse.
2) By putting into standard form sketch the ellipse E given by the equation

$$
4 x^{2}+9 y^{2}=36
$$

3) Identify the values for a and b for the ellipse below and hence state the equation.

4) Find the general form for the equation of a tangent to the ellipse at the point $P(a \cos (t), b \sin (t))$.
5) Similarly to question 4, find the general form for the equation of the normal to the ellipse at the point $P(a \cos (t), b \sin (t))$.
6) Find a condition such that the line $y=m x+c$ is a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
7) The point $P\left(2,3 \frac{\sqrt{3}}{2}\right)$ lies on the ellipse E with parametric equations $x=4 \cos (\theta), y=3 \sin (\theta)$. The normal to the ellipse at P cuts the x - axis at the point A. Find the coordinates of the point A.
