Proof Approaches Card Sort

Prove that $(2x-1)(x+3) = 2x^2 + 5x - 3$ for all real x .	Prove that the interior angles of a triangle sum to 180°.	Prove that, for $n \in \mathbb{Z}$, if $3n + 2$ is even then <i>n</i> is even.
Prove that $\sqrt{2}$ is irrational.	Prove that for every positive integer n , where $3 \le n \le 8$ that the positive integer $n^2 + 3n$ is even.	Why is the inequality $(x + y)^4 \le x^4 + y^4$ not true.
Prove that the sum of two positive integers is positive.	Prove that the sum of any four consecutive integers is even.	A Mersenne prime is a prime number that can be written in the form $2^n - 1$ for some positive integer $n > 1$. Prove that the statement "For every prime number p , the number $2^p - 1$ is a Mersenne prime" is false.