Answer each question, showing full reasoning.	1) Expand $(1-3 x)^{\frac{1}{3}}$ up to the fourth non-zero term. Use this expansion to approximate $0.4^{\frac{1}{3}}$	2) Integrate $\int e^{x} \sin (x) \mathrm{d} x$	3) Find the stationary points of the curve $y=4 x^{3}+5 x^{2}+2 x+5$
4) Use the Newton-Raphson method to find the first 3 approximations to the root of $y=x \mathrm{e}^{x}-3$ with $x_{0}=1.5$.	5) Rationalise $\frac{2+\sqrt{3}}{4-\sqrt{3}}$	6) Find the magnitude and direction (relative to the x-axis) of $5 \mathbf{i}+6 \mathbf{j}$.	7) Sketch $y=2 x^{2}-5 x-3$ indicating all important features.
8) Evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $y=\cos (x)$ at $x=\frac{\pi}{3} .$	9) Sketch $y=\operatorname{cosec}(x)$.	10) Integrate $y=\int \frac{4 x}{\sqrt{2 x^{2}+5}} \mathrm{~d} x$	11) Prove $\cos 2 A=2 \cos ^{2}(A)-1$
12) Find the cartesian form of the curve defined parametrically by $x=2 t+1, \quad y=\frac{1}{4 t}$	13) Find an equation of the tangent to the circle $x^{2}+y^{2}=a^{2}$ at the point (h, k) on the circumference.	14) Differentiate wrt x, $y=\sin ^{2}(x) \cos (x)$	15) Sketch the curve given by $\begin{aligned} & x=a+2 a \cos (\theta) \\ & y=2 a \sin (\theta), 0 \leq \theta<2 \pi \end{aligned}$
16) Find the points of inflexion of $y=x^{2} \exp (x)$.	17) Factorise completely $f(x)=x^{3}-6 x^{2}+11 x-6 .$	18) Prove that there are an infinite amount of prime numbers.	19) Differentiate from first principles $y=\cos (x)$.
20) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $2 x^{2} y+4 x y^{2}=3 x$	21) Find $f^{-1}(x)$ for $f(x)=3 x^{2}-5$.	22) Solve $\|5-2 x\|=\|x+3\| .$	23) Express in partial fractions $\frac{5 x^{2}+16 x+18}{x(x+3)^{2}}$
24) Divide $\begin{aligned} & 8 x^{3}+18 x^{2}+9 x+5 \text { by } \\ & (2 x+1) \end{aligned}$	25) Use the trapezium rule with 4 strips to approximate the integral of $f(x)=\mathrm{e}^{x^{2}} \sin (x)$ between $x=0$ and $x=2$.	26) A stone is projected vertically upwards with speed $4 \mathrm{~ms}^{-1}$ from a point 1 m above the ground. Find the time taken to reach its highest point.	27) Differentiate $y=\frac{2 x^{2}+4 x+1}{x+3}$ using the quotient rule.
28) Let $X \sim B(12,0.3)$, find $P(5 \leq x \leq 11)$	29) Simplify $\frac{3 x^{3}+7 x^{2} 7-x-3}{x^{2}+4 x-6}$	30) Let $f(x)=3 x+2$ and $g(x)=7 x-1$. Solve $f g(x)=g f(x)$	31) For two events A and B show $A^{\prime} \cup B^{\prime}$ on a Venn diagram.

