May Revision Question-a-Day

Answer each question, showing full reasoning.	1) Expand $(1 - 3x)^{\frac{1}{3}}$ up to the fourth non-zero term. Use this expansion to approximate $0.4^{\frac{1}{3}}$	2) Integrate $\int e^x \sin(x) \mathrm{d}x$	3) Find the stationary points of the curve $y = 4x^3 + 5x^2 + 2x + 5$.
4) Use the Newton-Raphson method to find the first 3 approximations to the root of $y = x e^x - 3$ with $x_0 = 1.5$.	5) Rationalise $\frac{2+\sqrt{3}}{4-\sqrt{3}}$	6) Find the magnitude and direction (relative to the x -axis) of $5\mathbf{i} + 6\mathbf{j}$.	7) Sketch $y = 2x^2 - 5x - 3$ indicating all important features.
8) Evaluate $\frac{dy}{dx}$ for $y = \cos(x)$ at $x = \frac{\pi}{3}$.	9) Sketch $y = \operatorname{cosec}(x)$.	10) Integrate $y = \int \frac{4x}{\sqrt{2x^2 + 5}} \mathrm{d}x$	11) Prove $\cos 2A = 2\cos^2(A) - 1$
12) Find the cartesian form of the curve defined parametrically by $x = 2t + 1$, $y = \frac{1}{4t}$	13) Find an equation of the tangent to the circle $x^2 + y^2 = a^2$ at the point (h, k) on the circumference.	14) Differentiate wrt x , $y = \sin^2(x)\cos(x)$	15) Sketch the curve given by $x = a + 2a \cos(\theta)$, $y = 2a \sin(\theta)$, $0 \le \theta < 2\pi$.
16) Find the points of inflexion of $y = x^2 \exp(x)$.	17) Factorise completely $f(x) = x^3 - 6x^2 + 11x - 6.$	18) Prove that there are an infinite amount of prime numbers.	19) Differentiate from first principles $y = cos(x)$.
20) Find $\frac{dy}{dx}$ for $2x^2y + 4xy^2 = 3x$	21) Find $f^{-1}(x)$ for $f(x) = 3x^2 - 5$.	22) Solve $ 5-2x = x+3 $.	23) Express in partial fractions $\frac{5x^2 + 16x + 18}{x(x+3)^2}$
24) Divide $8x^3 + 18x^2 + 9x + 5$ by $(2x + 1)$.	25) Use the trapezium rule with 4 strips to approximate the integral of $f(x) = e^{x^2} \sin(x)$ between $x = 0$ and $x = 2$.	26) A stone is projected vertically upwards with speed 4ms ⁻¹ from a point 1 m above the ground. Find the time taken to reach its highest point.	27) Differentiate $y = \frac{2x^2 + 4x + 1}{x + 3}$ using the quotient rule.
28) Let $X \sim B(12,0.3)$, find $P(5 \le x \le 11)$	29) Simplify $\frac{3x^3 + 7x^27 - x - 3}{x^2 + 4x - 6}$	30) Let $f(x) = 3x + 2$ and $g(x) = 7x - 1$. Solve $fg(x) = gf(x)$	31) For two events A and B show $A' \cup B'$ on a Venn diagram.