The Inverse of A 2×2 Matrix

Thomas Bennison

December 21, 2014

CHAPTER 1

The Inverse of a General 2×2 Matrix

We want to find the inverse of the 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. So this means finding the matrix $B=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$ such that $A B=I=B A$. Of course, we want to find the entries e, f, g and h in terms of the entries of the matrix A. We have the following identity,

$$
\left(\begin{array}{ll}
a & b \tag{1.1}\\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

which leads to the following four simultaneous equations to be solved

$$
\begin{align*}
a e+b g & =1 \tag{1.2}\\
a f+b h & =0 \tag{1.3}\\
c e+d g & =0 \tag{1.4}\\
c f+d h & =q \tag{1.5}
\end{align*}
$$

If we consider Equations (1.2) and (1.4) we can eliminate g by multiplying (1.2) by d,

$$
\begin{equation*}
d a e+d b g=d \tag{1.6}
\end{equation*}
$$

and multiplying (1.4) by b which gives

$$
\begin{equation*}
b c e+b d g=0 \tag{1.7}
\end{equation*}
$$

Now subtracting, (1.6) - (1.7) leads to

$$
\begin{align*}
\quad d a e-b c e & =d \tag{1.8}\\
\Rightarrow \quad e(d a-b c) & =d
\end{align*}
$$

which means that,

$$
\begin{equation*}
e=\frac{d}{d a-b c} \tag{1.9}
\end{equation*}
$$

Substituting (1.9) into (1.4) we have,

$$
\frac{c d}{d a-b c}+d g=0
$$

meaning that

$$
\begin{equation*}
g=-\frac{c}{d a-b c} . \tag{1.10}
\end{equation*}
$$

So we now have two entries of the inverse matrix, it just remains to find the other two. Using (1.3) and (1.5) we can proceed in the same way and eliminate f.

$$
\begin{array}{ll}
(1.3) \times c & c a f+c b h=0 \\
(1.5) \times a & c a f+a d h=a . \tag{1.12}
\end{array}
$$

Now, (1.12) - (1.11) results in,

$$
\begin{aligned}
a d h-c b h & =a \\
\Rightarrow \quad h(a d-c b) & =a
\end{aligned}
$$

giving that,

$$
\begin{equation*}
h=\frac{a}{a d-c b} . \tag{1.13}
\end{equation*}
$$

Finally, substituting (1.13) into (1.3) we can obtain our final entry, since

$$
\begin{equation*}
a f+\frac{b a}{a d-c b}=0 \tag{1.14}
\end{equation*}
$$

means that

$$
\begin{equation*}
f=-\frac{b}{a d-c b} \tag{1.15}
\end{equation*}
$$

And so we have worked out the form of the inverse of a general 2×2 matrix, which combining (1.9), (1.10), (1.13) and (1.15) we now know to be

$$
\begin{align*}
A^{-1} & =B \tag{1.16}\\
& =\left(\begin{array}{cc}
\frac{d}{d a-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{d a-b c} & \frac{a}{a d-c b}
\end{array}\right) \tag{1.17}\\
& =\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) . \tag{1.18}
\end{align*}
$$

