Introduction to Matrix Transformations

Matrices and their transformations underpin modern computer graphics. In this activity we explore the matrix representations for a variety of geometrical transformations.
Consider the shapes shown below.

We can describe these shapes using a matrix. Given the points $D(0,0)$, $E(1,0), F(1,1)$ and $G(0,1)$ we can describe shape A by the matrix $S=(D E F G)$. That is, we define the 2×4 matrix from the coordinates of the vertices of A as below,

$$
S_{A}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Note that the x-coordinates of the vertices are in the first row and the y coordinates of the vertices are in the second row.

Write down similar matrices, S_{B} and S_{C} for the shapes B and C shown above.

$$
\begin{aligned}
& S_{B}= \\
& S_{C}=
\end{aligned}
$$

We define the action of a matrix on a point by performing matrix multiplication. For example, consider the point $P(2,2)$ which, in column vector notation, is $\binom{2}{2}$ and the matrix $U=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. The action of U on P is calculated as follows

$$
U P=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{2}{2}=\binom{2}{-2}
$$

Any geometric transformation can be represented as a matrix, it is this idea that we investigate in this activity.

Investigation 1

We wish to investigate the affect of the transformation T_{1} which we define by the matrix

$$
M_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Using matrix multiplication we can investigate the effect of this transformation on the shape A. The columns of the product $M_{1} S_{A}$ will be the coordinates of vertices of the transformed shape A^{\prime}.

$$
M_{1} S_{A}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
0 & 0 & -1 & -1
\end{array}\right)
$$

Now apply the transformation defined by the matrix M_{1} to the matrices for shapes B and C.

$$
M_{1} S_{B}=
$$

$$
M_{1} S_{C}=
$$

Plot the transformed shapes A^{\prime}, B^{\prime} and C^{\prime} on the axes below.

What geometrical transformation does the matrix M_{1} represent?

Investigation 2

We wish to investigate the affect of the transformation T_{1} which we define by the matrix

$$
M_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Now apply the transformation defined by the matrix M_{2} to the matrices for shapes A, B and C to generate the transformed shapes A^{\prime}, B^{\prime} and C^{\prime}.

$$
M_{2} S_{A}=
$$

$$
M_{1} S_{B}=
$$

$$
M_{1} S_{C}=
$$

Plot these transformed shapes on the grid below.

What geometric transformation does the matrix M_{2} represent?

Investigation 3

We wish to investigate the affect of the transformation T_{1} which we define by the matrix

$$
M_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Now apply the transformation defined by the matrix M_{3} to the matrices for shapes A, B and C to generate the transformed shapes A^{\prime}, B^{\prime} and C^{\prime}.

$$
M_{3} S_{A}=
$$

$$
M_{3} S_{B}=
$$

$$
M_{3} S_{C}=
$$

Plot these transformed shapes on the grid below.

What geometric transformation does the matrix M_{3} represent?

Investigation 4

We wish to investigate the affect of the transformation T_{1} which we define by the matrix

$$
M_{4}=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Now apply the transformation defined by the matrix M_{4} to the matrices for shapes A, B and C to generate the transformed shapes A^{\prime}, B^{\prime} and C^{\prime}.

$M_{4} S_{B}=$

$$
M_{4} S_{C}=
$$

Plot these transformed shapes on the grid below.

What geometric transformation does the matrix M_{4} represent?

Investigation 5

We wish to investigate the affect of the transformation T_{1} which we define by the matrix

$$
M_{5}=\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right)
$$

where $k \in \mathbb{R}$.
First consider the matrix $M_{(5,1)}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$. Now apply the transformation defined by the matrix $M_{(5,1)}$ to the matrices for shapes A, B and C to generate the transformed shapes A^{\prime}, B^{\prime} and C^{\prime}.

$$
M_{(5,1)} S_{A}=
$$

$$
M_{(5,1)} S_{B}=
$$

$$
M_{(5,1)} S_{C}=
$$

Now consider the matrix $M_{(5,2)}=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$. Now apply the transformation defined by the matrix $M_{(5,2)}$ to the matrices for shapes A, B and C to generate the transformed shapes $A^{\prime \prime}, B^{\prime \prime}$ and C^{\prime}.

$$
M_{(5,2)} S_{A}=
$$

$M_{(5,2)} S_{B}=$

$$
M_{(5,2)} S_{C}=
$$

Plot, and label, the shapes $A^{\prime}, B^{\prime}, C^{\prime} A^{\prime \prime}, B^{\prime \prime}$ and $C^{\prime \prime}$ on the pair of axes on the next page.

Using the answers for the matrices $M_{(5,1)}$ and $M_{(5,2)}$ what geometric transformation does the general matrix,

$$
M_{5}=\left(\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right)
$$

represent?

Investigation 6

We wish to investigate the affect of the transformation T_{1} which we define by the matrix

$$
M_{6}=\left(\begin{array}{ll}
k & 0 \\
0 & 1
\end{array}\right),
$$

where $k \in \mathbb{R}$.
First consider the matrix $M_{(6,1)}=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$. Now apply the transformation defined by the matrix $M_{(5,1)}$ to the matrices for shapes A, B and C to generate the transformed shapes A^{\prime}, B^{\prime} and C^{\prime}.

$$
M_{(6,1)} S_{A}=
$$

$$
M_{(6,1)} S_{B}=
$$

$$
M_{(6,1)} S_{C}=
$$

Now consider the matrix $M_{(6,2)}=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$. Now apply the transformation defined by the matrix $M_{(6,2)}$ to the matrices for shapes A, B and C to generate the transformed shapes $A^{\prime \prime}, B^{\prime \prime}$ and C^{\prime}.

$$
M_{(6,2)} S_{A}=
$$

$M_{(6,2)} S_{B}=$
$M_{(6,2)} S_{C}=$

Plot, and label, the shapes $A^{\prime}, B^{\prime}, C^{\prime} A^{\prime \prime}, B^{\prime \prime}$ and $C^{\prime \prime}$ on the pair of axes on the next page.

Using the answers for the matrices $M_{(6,1)}$ and $M_{(6,2)}$ what geometric transformation does the general matrix,

$$
M_{6}=\left(\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right)
$$

represent?

Investigation 7

We wish to investigate the affect of the transformation T_{1} which we define by the matrix

$$
M_{7}=\left(\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right)
$$

where $k \in \mathbb{R}$.
First consider the matrix $M_{(7,1)}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Now apply the transformation defined by the matrix $M_{(7,1)}$ to the matrices for shapes A, B and C to generate the transformed shapes A^{\prime}, B^{\prime} and C^{\prime}.

$$
M_{(7,1)} S_{A}=
$$

$$
M_{(7,1)} S_{B}=
$$

$$
M_{(7,1)} S_{C}=
$$

Now consider the matrix $M_{(7,2)}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$. Now apply the transformation defined by the matrix $M_{(7,2)}$ to the matrices for shapes A, B and C to generate the transformed shapes $A^{\prime \prime}, B^{\prime \prime}$ and C^{\prime}.

$$
M_{(7,2)} S_{A}=
$$

$$
M_{(7,2)} S_{B}=
$$

$$
M_{(7,2)} S_{C}=
$$

Plot, and label, the shapes $A^{\prime}, B^{\prime}, C^{\prime} A^{\prime \prime}, B^{\prime \prime}$ and $C^{\prime \prime}$ on the pair of axes on the next page.

Using the answers for the matrices $M_{(7,1)}$ and $M_{(7,2)}$ what geometric transformation does the general matrix,

$$
M_{7}=\left(\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right)
$$

represent?

