

Kirk Hallam Community Academy

A-Level Further Mathematics Year 13 Mechanics Mock 1

AQA Specification

Name:
Class:

Mark: / 50

1 A point on the edge of a record is rotating at 40 rpm . Given that the diameter of the record is 30 cm , the speed of the point is
$12 \mathrm{~ms}^{-1}$
$0.63 \mathrm{~ms}^{-1}$
$2.63 \mathrm{~ms}^{-1}$
$1.26 \mathrm{~ms}^{-1}$
[1 mark]

2 A particle of mass 2 kg experiences a force of 3 N for 2 seconds. It was initially moving at $2 \mathrm{~ms}^{-1}$. Its speed once the force is removed is
4 ms-1
$2 \mathrm{~ms}^{-1}$
$3 \mathrm{~ms}^{-1}$
$1 \mathrm{~ms}^{-1}$
[1 mark]

3 A uniform lamina is shown below

where

$$
\begin{aligned}
& |A F|=|E D|=3 \\
& |E F|=4 \\
& |D C|=2 \\
& |A B|=|B C|=3
\end{aligned}
$$

a) Find the distance of the centre of mass of the lamina from
i) $E F$
ii) $A F$
b) The lamina is now suspended from F. Find the angle the side $E F$ makes with the vertical.

4 An elastic string has natural length 1.5 m and modulus of elasticity 12 N . Calculate the energy stored in the string when it is stretched to a length of 2.3 m .
[3 marks]

5 A particle of mass 3 kg is placed on a smooth plane inclined at 30° to the horizontal.
It is released from rest at a point A and moves in a straight line down the plane. It moves past the point B which is 6 m down the plane from A. It subsequently passes the point C which is further down the plane. When at C the speed of the particle is $\sqrt{110} \mathrm{~ms}^{-1}$.

Find the distance $B C$.
[6 marks]

6 Newton's Law of Gravitation states that the attractive force, F, between two point bodies is directly proportional to the product of their masses, m_{1} and m_{2}, and inversely proportional to the square of the distance, r, between them. The constant of proportionality is known as G.

Find the dimensions of G for the formula

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

7 a) Use integration to prove that the centre of mass of a solid cone of radius r, and height h lies $\frac{1}{4}$ of the way from the base to the vertex.
b) Explain, without calculation why the centre of mass must lie along the perpendicular from the base to the vertex.
[1 mark]

8 A small smooth ball of mass 1.5 kg is moving in $X Y$ plane and collides with a smooth fixed vertical wall containing the y-axis.
The velocity of the ball just before impact is $\mathbf{u}=-5 \mathbf{i}-2 \mathbf{j}$ and just after it is $\mathbf{v}=\frac{5}{4} \mathbf{i}-2 \mathbf{j}$.
a) Find the speed of the ball before and after impact.
[2 marks]
b) Find the loss of kinetic energy as a result of the impact.
[2 marks]
c) Find the angle of deflection of the ball.
[3 marks]
d) Show that the coefficient of restitution between the ball and the wall is $\frac{1}{4}$.
[2 marks]

9 Sophie is investigating how the speed, v, of waves on a string depends on the mass, m, and length, l, of the string and the tension, t, in the string.
She conjectures a relationship of the form,

$$
v=k m^{\alpha} l^{\beta} t^{\gamma}
$$

where k is a dimensionless constant.
Determine the values of α, β, and γ.

10 A child's clacker consists of a small sphere, Q of mass $2 m$ which is joined to two light rods $A Q$ and $B Q$, each of length l.
The other ends of the rods $A Q$ and $B Q$ are at a distance l apart on a third rod as shown below

$A Q$ and $B Q$ can freely rotate about $A B$.
Find the tension in both $A Q$ and $B Q$ when the sphere P is moving in a horizontal circle with speed $\sqrt{5 g l}$.

