## A - Level Maths Sequences Recap

| Arithmetic Seque                | ences                                                                                                                                                                                                                                       |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General form of the sequence    | a, a+d, a+2d, a+3d,                                                                                                                                                                                                                         |
| Term to term rule               | odd d                                                                                                                                                                                                                                       |
| nth term rule                   | $U_n = a + (n-1)d$                                                                                                                                                                                                                          |
| Sum of the first <i>n</i> terms | $S_n = \frac{n}{2} \left[ 2\alpha + (n-1)d \right] = \frac{n}{2} \left[ \alpha + l \right]$                                                                                                                                                 |
| +_                              | Proof:<br>$S_n = a + (a+d) + (a+2d) + \dots + (a+(n-1)d)$<br>$S_n = a + (n-1)d + (a+2d) + \dots + (a+2d) + (a+d) + a$<br>$S_n = a + (n-1)d + (a-(n-1)d) + \dots + (a+2d) + a$<br>$2S_n = (2a + (n-1)d) + (2a+(n-1)d) + \dots + (2a+(n-1)d)$ |
|                                 | $S_{0} = 2S_{n} = n \left(2a + (n-1)d\right)$ $S_{n} = \frac{n}{2} \left(2a + (n-1)d\right)$                                                                                                                                                |

## **Example**

Find the sum of the first 10 terms of the arithmetic series with first term 4 and common difference 3

$$S_{h} = \frac{10}{2} \left[ 2 \cdot 4 + (9) \cdot 3 \right]$$

$$= 175$$

1.11



| Geometric Sequences                                                                        |                                                                                                                                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| General form of the sequence                                                               | $a, ar, ar^2, \cdots$                                                                                                                                                                                                                                        |  |
| Term to term rule                                                                          | × 62 ~                                                                                                                                                                                                                                                       |  |
| nth term rule                                                                              | $u_n = a \times r^{n-1}$                                                                                                                                                                                                                                     |  |
| Sum of the first <i>n</i> terms                                                            | $S_n = a(1-r^n) = a(r^n-1)$                                                                                                                                                                                                                                  |  |
|                                                                                            | Proof:<br>$S_{n} = \alpha + \alpha r + \alpha r^{2} + \cdots - + \alpha r^{n}$ $FS_{n} = \alpha r + \alpha r^{2} + \alpha r^{3} + \cdots - + \alpha r^{n}$ $S_{n} - rS_{n} = \alpha - \alpha r^{n}$ $S_{n}(1-r) = \alpha(1-r^{n})$ $S_{n} = \alpha(1-r^{n})$ |  |
| Sum to infinity                                                                            | $S_{\infty} = \frac{a}{1-r},  r _{\kappa} $                                                                                                                                                                                                                  |  |
| Example                                                                                    | <i>i</i> ,                                                                                                                                                                      |  |
| Find the sum to infinity of the geometric series with common ratio $\frac{1}{4}$ and first |                                                                                                                                                                                                                                                              |  |
| term 24.                                                                                   | $S_{\infty} = \frac{a}{1-r} = \frac{24}{1-4} = \frac{24}{34} = 32$                                                                                                                                                                                           |  |



| Sequence and Series Properties |                                                          |  |
|--------------------------------|----------------------------------------------------------|--|
| Increasing Sequence            | Un 7 Un. Vn                                              |  |
|                                | 2, 4, b, 8, 10 you hereging sequence                     |  |
| Decreasing Sequence            | Un+1 < Un                                                |  |
|                                | 30,21,080,15,10,5,0,-5,                                  |  |
|                                | 30,25,080,15,10,5,0,-5,                                  |  |
|                                | is a develosing sequence.                                |  |
| Periodic Sequence              | un = untp & fr < IN, p < IN<br>2 22 5 2225 2225 period 4 |  |
| Sigma Notation                 | $\sum_{r=1}^{6} (r+1) = 2+3+4+5+6+7$ $= 27$              |  |
|                                |                                                          |  |



## **Example**

A sequence is arithmetic with 2nd term 7 and 10th term 31. Find the sum of the first 100 terms.

$$a+3d=70$$

$$a+9d=310$$

$$3-0$$

$$8d=2+$$

$$d=3 = 3a=4$$

$$5_{100} = \frac{100}{2}[2x+(99)x^{3}]$$

$$= 15250$$



## **Example**

A sequence is defined by  $u_{n+1} = pu_n + q$  where p and q are constants. The first three terms of the sequence are given by  $u_1 = 200$ ,  $u_2 = 100$  and  $u_3 = 60.$ 

Find the values of p and q a)

$$U_{3} = 100 = p \times 11, +q \qquad 30 \approx 100 = 200 p + q$$

$$U_{3} = p \times 100 + q \qquad 3 = 100 - 200 p$$

$$GO = 100 p + 100 - 200 p$$

$$GO = \frac{1}{100} = \frac{1}{100} = \frac{1}{100}$$

$$P = \frac{1}{100}$$

$$P = 40$$

$$= 20$$

$$= 20$$

Find the value of  $u_5$ b)

Find the value of 
$$u_5$$

$$u_4 = 200$$

$$u_4 = \frac{1}{10} \times 60 + 20 = \frac{1}{10} \times 40 + 20 = 37.6$$

$$u_3 = 60$$

$$u_5 = \frac{4}{10} \times 40 + 20 = 37.6$$

Un+1 = 4 Un +20

The limit of  $u_n$  as  $n \to \infty$  is L. Find L. c)

hthe limit 
$$L = \frac{4}{10}L + 20$$

$$\Rightarrow \frac{6L = 20}{10} \Rightarrow L = \frac{100}{3} \approx 33\frac{1}{3}$$