A - Level Maths Coordinate Geometry Recap

Straight Lines / Linear Functions

The equation of a line with gradient m passing through the point (x_1, y_1) has equation

The equation of a line passing through the points with coordinates (x_1,y_1) and (x_2, y_2) has equation

x-intercept: $x = -\frac{\zeta}{a}$

y-intercept:
$$y = -\frac{c}{b}$$

Gradient: - 4

Consider two lines $l_1: y = m_1x + c_1$ and $l_2: y = m_2x + c_2$. Then

 l_1 and l_2 are parallel if: $m_1 = m_2$

 l_1 and l_2 are perpendicular if: $m_1 m_2 = -1$

The midpoint of the line segment joining (x_1, y_1) to (x_2, y_2) is:

$$\left(\begin{array}{c} x_1 + x_2 \\ \hline 2 \end{array}, \begin{array}{c} y_1 + y_2 \\ \hline 2 \end{array}\right)$$

The distance between the point (x_1, y_1) and the point (x_2, y_2) is:

Example

Find the equation of the perpendicular bisector of the line segment AB where A(2, -4) and B(6,4)

Midpoint of AB =
$$\left(\frac{2+6}{2}, -\frac{4+4}{2}\right) = (4+,0)$$

Fraction of AB is
$$\frac{\Delta y}{12} = \frac{4-4}{6-2} = \frac{8}{4} = 2$$

Goding graperheuter bisector is $\frac{1}{2}$ So eging \perp bisector is g the somm $y = -\frac{1}{2} \times + C$

So Eqn a byector is
$$y = -\frac{1}{3}s + 2$$

Circles

The circle, centre the origin radius r has equation:

The circle, centre (a, b), radius r has equation:

$$(x-a)^2 + (y-b)^2 = r^2$$

Annotate the circles below to complete the circle theorems

The tangent at (h, k) to the circle with equation $x^2 + y^2 = a^2$ has equation:

$$h_{3}c + ky = a^{2}$$

Example

Find the centre and radius of the circle $x^2 - 12x + y^2 + 6y - 4 = 0$

The centre and radius of the circle
$$x^2 - 12x + y^2 + 6y - 4 = 0$$

$$\Rightarrow (x - 6)^2 + (y + 3)^2 - 36 - 9 - 4 = 0$$

$$\Rightarrow (x - 6)^2 + (y + 3)^2 = 4 + 9$$

$$\Rightarrow (x - 6)^2 + (y + 3)^2 = 4 + 9$$
Cantre: $(6, -3)$
Radius: $(6, -3)$

Example

Find the equation of the tangent to the circle $(x-2)^2 + (y+1)^2 = 25$ at the point (5,3).

So equation of tangent is
$$y = \frac{-3}{4}x + \frac{27}{4}$$

Example

A circle passes through the points A(8,8), B(16,-4) and C(-2,-16). Find the equation of the circle given that the equation of the perpendicular bisector of BC is 3x + 2y = 1.

So eging bijector g RB is
$$y = \frac{2}{3}x + C$$
, yposving though

$$y = \frac{2}{3}x - 6$$

So the centre, ζ , is (3, -4r)To giril the radius, consider $|CA| = \int s^2 + 12^2 = .13$ so radius = 13

So $(x-3)^2 + (y+4r)^2 = 169$

