AQA A-Level Further Mathematics Warmup - Paper 3MD 2023

Find the work done when the force $F(t) = t^2 + 5t$ acts for 3 seconds.	An elastic string has modulus of elasticity λ and natural length <i>l</i> . Prove that the work done extending from extension x_1 to x_2 is $\frac{\lambda}{2l} (x_2^2 - x_1^2)$	A printer can make cards and gift tags. The number, x , of gift tags must be no more than 80 and the number of cards, y , must be no more than 60. A gift tag costs £1 to produce and a card £3. This week the printer can spend no more than £120.	 a) Formulate the situation described on the left as a linear programming problem. b) Represent this graphically. c) Suppose that the printer makes 20p profit on gift tag and 75p profit on a card. Find the maximum profit. 	A particle A of mass 2 kg is attached to the lower end of a light inextensible string with the upper end fixed at a point B. When the particle moves in a horizontal circular path, the string traces out the curved surface of a cone and makes an angle 60° with the
In critical path analysis what is a "critical activity" ?	What does Newton's Experimental law state in the context of collisions?	Construct the Cayley table for the set $\{1,3,5,7\}$ under multiplication modulo 8	Find the centre of mass of the lamina shown below. If it is suspended from A, find the angle the vertical makes with the side AD	 downward vertical. The centre of the circular path lies 2 m directly below <i>B</i> a) Find the tension in the string b) Find the angular speed of the particle
What does it mean for a binary operation \star on a set <i>S</i> to be associative and commutative?	A uniform rod AB of mass 2000 grams is pivoted at A and held in equilibrium at an angle of 45° to the vertical by a force F applied at B , perpendicular to AB . Find the force F	G is a connected planar graph with 6 faces and 4 vertices. How many edges will G have?		What is the route inspection problem?
What does Kuratowski's theorem say?		The pay-off matrix from Player1's point of view is shown to the right. What would be the pay-off matrix from Player 2's point of view:P2 plays AP2 plays AP2 plays BP1 plays A20P1 plays B8-4	Draw the graph K_5	Is the equation $v^2 = u^2 + 2gs$ dimensionally consistent ?

Impulse = $\int_{0}^{3} t^{2} + 5t dt$ = $\left[\frac{t^{3}}{3} + \frac{5}{2}t^{2}\right]_{0}^{3}$ = 31.5 N	$WD = \int_{x_1}^{x_2} T dx$ $= \int_{x_1}^{x_2} \frac{\lambda x}{l}$ $= \frac{\lambda}{l} \left[\frac{x^2}{2} \right]_{x_1}^{x_2}$ $= \frac{\lambda}{2l} \left(x_2^2 - x_1^2 \right)$	$x \ge 0$ $y \ge 0$ $x \le 80$ $y \le 60$ $3x + y \le 120$ Optimal solution = (20,60), so 20 gift tags and 60 cards.		a) Resolving vertically, $T \cos(6) - 2g = 0$ $\Rightarrow \qquad T = \frac{2g}{0.5}$ = 39.2 N
An activity where there is no slack.	$e = \frac{\text{speed of separation}}{\text{speed of approach}}$	\times_8 135711357331755571377531	$\frac{27}{2}\bar{x} = 9 \times \frac{5}{2} + \frac{9}{2} \times 5$ so $\bar{x} = \frac{10}{3}$ $\frac{27}{2}\bar{y} = 9 \times \frac{5}{2} + \frac{9}{2} \times 2$	b) Applying $F = m a$ towards the centre. $T \sin(60) = 2a \Rightarrow a = \frac{T \sin(60)}{2}$ so $a = \frac{49\sqrt{3}}{5}$. Now $\omega^2 = \sqrt{\frac{a}{r}}$, so $\omega = \sqrt{\frac{16.97}{1.5 \tan 60}} \approx 2.55$
Commutative: $a \star b = b \star a$ Associative: $(a \star b) \star c = a \star (b \star c)$	A	By Euler's formula F + V - E = 2 and so G has 8 edges.	So $\bar{y} = \frac{7}{3}$. The angle the side AD makes with the vertical is $\theta = \arctan\left(\frac{5}{7}\right) \approx 35.54^{\circ}$	To find the shortest route that covers all of the arcs of a graph at least once, returning to the starting point if required.
A graph is non-planar if and only if it contains a subgraph that is a subdivision of either $K_{3,3}$ or K_5	Taking anticlockwise moments about A. $2gx \cos(45) - F \times 2x = 0$ $F = \frac{2g \cos 45)}{2}$ So, $= \frac{49\sqrt{2}}{10}$ $\approx 6.92 \text{ N}$	P1 plays AP1 plays BP2 plays A2P2 plays B0-4		$[v^{2}] = L^{2}T^{-2}$ $[u^{2}] = L^{2}T^{-2}$ $[2gs] = LT^{-2}L = L^{2}T^{-2}$ And so the equation $v^{2} = u^{2} + 2gs$ is dimensionally consistent.

AQA A-Level Further Mathematics Warmup - Paper 3MD 2023