AQA Level 2 Further Mathematics Warmup - Paper 22023

Write $\begin{aligned} & \sqrt{75}+3 \sqrt{108}-2 \sqrt{12} \\ & \text { in the form } a \sqrt{3} \end{aligned}$	What is the matrix representing an enlargement, scale factor 4 centre the origin?	Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $y=\frac{(x+3)(x+1)}{x}$	Expand and simplify $\left(z^{2}+2 z-3\right)(2 z+3)-2(z+1)\left(z^{3}-1\right)$	$\begin{aligned} & \text { Solve } x y=10 \text { and } \\ & x+y=7 \end{aligned}$ simultaneously.
Define the piecewise linear function shown below	Write down the equation of the circle with centre $(3,4)$ and radius 6.	$\begin{aligned} & \text { Sketch } y=\cos (x) \text { and } \\ & y=\sin (x) \text { for } \\ & 0^{\circ} \leq x \leq 720^{\circ} \end{aligned}$	$\begin{aligned} & \text { Find } f^{-1}(x) \text { for } \\ & f(x)=\frac{4}{2 x+3} \end{aligned}$	Prove that $(n+2)^{2}-(n-2)^{2}$ is divisible by 8 for all $n \in \mathbb{N}$
	When is the function $y=x^{2}-x-6$ increasing?	How many odd four digit numbers can you make with the digits $2,3,4,5$ with no repetition?	Find the equation of the tangent to the circle $(x-3)^{2}+(y+2)^{2}=25$ at the point $(6,2)$	For the triangle shown below find: a) The side length a. b) The area of the triangle
Find the equation of the straight line through $(4,5)$ and $(2,9)$	Write down the limiting value of the sequence $\frac{3 n}{2 n+5}$ as $n \rightarrow \infty$	Factorise $9 x^{4} y^{2}-25$	Show that $(x+4)$ is a factor of $p(x)=x^{3}+3 x^{2}-6 x-8$	
Prove $\tan (x) \sin (x)+\cos (x)=\frac{1}{\cos (x)}$	Factorise fully $3(x+5)^{4}-2(x+5)^{3}$	Find the rate of change of y with respect to x for $y=3 x^{2}+4 x$ when $x=2$	Fully factorise the polynomial above.	Find the nth term of the sequence $1, \quad 5, \quad 13, \quad 25$

AQA Level 2 Further Mathematics Warmup - Paper 22023 Answers

$\begin{aligned} & =\sqrt{75}+3 \sqrt{108}-2 \sqrt{12} \\ & =\sqrt{25 \times 3}+3 \sqrt{36 \times 3}-2 \sqrt{4 \times 3} \\ & =5 \sqrt{3}+18 \sqrt{3}-4 \sqrt{3} \\ & =19 \sqrt{3} \end{aligned}$	$\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$	$\begin{aligned} & y=\frac{x^{2}+4 x+3}{x} \\ & =x+4+3 x^{-1} \\ & \text { So } \frac{\mathrm{d} y}{\mathrm{~d} x}=1-\frac{3}{x^{2}} \end{aligned}$	$-2 z^{4}+7 z^{2}+2 z-7$	$x=2, y=5$
$\begin{aligned} f(x) & =4, & & 0 \leq x<2 \\ & =-x+6, & & 2 \leq x<4 \\ & =3 x+10, & & 4 \leq x<6 \\ & =8, & & 6 \leq x<8 \end{aligned}$	$(x-3)^{2}+(y-4)^{2}=36$		$f^{-1}(x)=\frac{4-3 x}{2 x}$	$\begin{aligned}(n+2)^{2}-(n-2)^{2} & =n^{2}+4 n+4-\left(n^{2}-4 n+4\right) \\ & =8 n\end{aligned}$ which is divisible by 8 .
	Increasing when $x>\frac{1}{2}$	12	$3 x+4 y=26$	a) Using the cosine rule $\begin{aligned} a^{2} & =5^{2} 5^{2}-2 \times 5 \times 5 \times \cos (30) \\ & =50-50 \cos (30) \\ & =6.6898729 \end{aligned}$ So $a \approx 2.588$
$y=-2 x+13$	$\frac{3}{2}$	$\left(3 x^{2} y-5\right)\left(3 x^{2} y+5\right)$	$p(-4)=(-4)^{3}+3 \times(-4)^{2}-6 \times-4-8$ Hence, $(x+4)$ is a factor of $p(x)$	b) Using the area formula $\begin{aligned} A & =\frac{1}{2} \times 5 \times 5 \times \sin (30) \\ & =\frac{25}{4} \end{aligned}$
$\begin{aligned} \text { LHS } & =\tan (x) \sin (x)+\cos (x) \\ & =\frac{\sin (x)}{\cos (x)} \sin (x)+\cos (x) \\ & =\frac{\sin ^{2}(x)+\cos ^{2} x}{\cos (x)} \\ & =\frac{1}{\cos (x)} \end{aligned}$	$\begin{aligned} & =(x+5)^{3}(3(x+5)-2) \\ & =(x+5)^{3}(3 x+13) \end{aligned}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x+4$ When $x=2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=16$	$p(x)=(x+4)(x-2)(x+1)$	$u(n)=2 n^{2}-2 n+1$

