AQA Level 2 Further Mathematics Warmup - Paper 1 2023

Rationalise the denominator $\frac{\sqrt{3}}{2+3\sqrt{3}}$	What is the turning point of the quadratic $y = 3x^2 + 9x + 2?$	Find the equation of the line parallel to $2x + 3y = 4$ which passes through (2,3)	Differentiate $y = x^2(x+3)$	$\begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 2 & 2 \end{pmatrix}$
Find the second derivative of $f(x) = 3x^4 + 2x^3 + 3x$	Find the first 3 terms of the sequence $u_n = \frac{4n-1}{3n}$ and the limiting value of u_n as $n \to \infty$	What is the matrix representing a reflection in the line $y = x$?	The graph to the right shows $y = x^2 - x - 6$. What is the line of symmetry?	
Find <i>a</i> and <i>b</i> such that $ \begin{pmatrix} 2 & 5 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 7 \\ a \end{pmatrix} = \begin{pmatrix} b \\ 23 \end{pmatrix} $	Sketch the circle $(x-3)^2 + (y+1)^2 = 9$ and state its radius and centre.	Sketch the graphs $y = \tan(2x)$ and $y = \sqrt{3}$ on the same axes.	By drawing a straight line on the graph to the right find approximate solutions for $x^2 - 3x + 3 = 0$	
Sketch the piecewise function $f(x) = x$ $0 \le x \le 2$ $= x^2 - 2$ $2 \le x \le 3$ $= -2x + 13$ $3 \le x \le 6$	Expand $(2 + 3x)^4$	Solve $\tan(2x) = \sqrt{3}$ for $0^{\circ} \le x \le 360^{\circ}$	$\text{Simplify} \frac{9x^2 - 16}{6x^2 + 5x - 4}$	Find the <i>n</i> th term of the sequence $3, 4, 7, 12, 15$
Express $2\sin^2(x) + 3\cos^2(x) + 5\cos(x) - 3$ in terms of powers of $\cos(x)$ only.	Sketch $y = \cos(x)$ for $-360^{\circ} \le x \le 360^{\circ}$	Find the length of the line segment joining $A(2,5)$ to $B(6,12)$	Find the tangent to the function $y = x^3 - 2x$ at the point $x = 1$	Solve the simultaneous equations x + y + z = 6 2x + 2y - z = 3 2x - y + 3z = 9

$\frac{9}{23} - \frac{2\sqrt{3}}{23}$	$y = 3\left(x + \frac{3}{2}\right)^2 - \frac{19}{4}$ so $\left(-\frac{3}{2}, -\frac{19}{4}\right)$	2x + 3y = 13	$y = x^{3} + 3x^{2} \operatorname{so}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^{2} + 6x$	$\begin{pmatrix} 12 & 4 \\ 17 & 5 \end{pmatrix}$
$f''(x) = 36x^2 + 12x$	$u_1 = 1, u_2 = \frac{7}{6}, u_3 = \frac{11}{9}$ Limiting value is $\frac{4}{3}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$x = \frac{1}{2}$	
a = 2 $b = 24$		x = 30°, 120°, 210°, 300°	Plot $y = 2x - 3$ $x \approx -0.791$ and $x \approx 3.791$	
	$16 + 96x + 216x^2 + 216x^3 + 81x^4$	4 2 (210, 1.732) (30, 1.732) (120, 1.732) (300, 1.732) (300, 1.732) (300, 1.732) (300, 1.732) (300, 1.732)	$\frac{3x-4}{2x-1}$	$n^2 - 2n + 4$
$\cos^2(x) + 5\cos(x) - 1$	$y = \cos(x) + 2$ $y = \cos(x) + 2$ $y = \cos(x)$	$\sqrt{65} \approx 8.06$	$\frac{dy}{dx} = 3x^2 - 2$ Equation of the tangent is $y = x - 2$	x = 1 y = 2 z = 3

AQA Level 2 Further Mathematics Warmup - Paper 1 2023