AQA A-Level Further Mathematics Warmup - Paper 2 2023

Prove by induction that $\sum_{r=1}^{n} = \frac{1}{3}n(n+1)(n+2)$	Find the derivative of $y = \arccos(2x^2 + 3)$	Find the image of the point $(2,3)$ under a reflection in the line $y = x$ followed by a rotation, centre the origin, 60° anticlockwise.	Sketch $\frac{x^2}{25} + \frac{y^2}{9} = 1$	Find <i>a</i> such that $\begin{pmatrix} 3\\1\\a \end{pmatrix}$ is perpendicular to $\begin{pmatrix} 6\\-2\\4 \end{pmatrix}$
Solve $\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2y}{x} = 4x$	State Viète's formulae for the cubic equation $ax^3 + bx^2 + cx + d = 0$ with roots α , β and γ .	Given that $1 - 2i$ is a root of $p(x) = z^3 - 5z^2 + 11z - 15$ find the other two roots.	Sketch the locus z+3-2i = z-1-i	Find the Maclaurin series of $y = \exp(2x)$
Show that $(b - a)$ is a factor of $\begin{vmatrix} bc & 1 & a \\ 1 & a & b \\ ac & 1 & b \end{vmatrix}$	Find $I = \int \frac{2x^2 + 3x + 21}{(x+1)(x^2+9)} \mathrm{d}x$	Find the equation of the line passing through $A(2,1,4)$ and $B(4,1,1)$. Find the coordinate of intersection of the line through AB with the line $\mathbf{r} = \begin{pmatrix} 1\\1\\2 \end{pmatrix} + \lambda \begin{pmatrix} 5\\0\\-4 \end{pmatrix}$	Find $\int_{3}^{5} \frac{1}{\sqrt{x-3}} dx$	Sketch $r = 3\sin(2\theta)$
Find the volume of revolution generated between the lines $x = 2$ and $x = 4$ when $y = \sqrt{3 + x^{\frac{3}{2}}}$ is rotated 2π around the <i>x</i> -axis	Find $\int \frac{1}{\sqrt{x^2 - 49}} \mathrm{d}x$	Sketch $y = \cosh(x)$ and $y = \operatorname{arcosh}(x)$	Find the equation of the plane passing through $A(3,2,1)$, $B(1,3,2)$ and $C(3,2,0)$	Sketch $y = \frac{2x+1}{3x-2}$

AQA A-Level Further Mathematics Warmup - Paper 2 2023

Proof	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2x}{\sqrt{-x^4 - 3x^2 - 2}}$	Rotation: 60° anticlockwise $\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$ Reflection in $y = x$: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ So image is $\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 - 2\sqrt{3} \\ 2 + 3\sqrt{3} \end{pmatrix}$	-6 -4 -2 0 2 4 6	a = -4
Integrating factor: $IF = e^{\int \frac{2}{x} dx} = x^2$ Hence, $yx^2 = \int x^4 dx$ and so $y = x^2 + \frac{C}{x^2}$	$\alpha + \beta + \gamma = \frac{-b}{a}$ $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$ $\alpha\beta\gamma = -\frac{d}{a}$	$z_1 = 1 - 2i$ $z_2 = 1 + 2i$ $z_3 = 3$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1 + 2x + 2x^2 + \frac{4}{3}x^3$
$\begin{vmatrix} bc & 1 & a \\ 1 & a & b \\ ac & 1 & b \end{vmatrix} = \begin{vmatrix} c(b-a) & 0 & a-b \\ 1 & a & b \\ ac & 1 & b \end{vmatrix}$ $= (b-a) \begin{vmatrix} c & 0 & -1 \\ 1 & a & b \\ ac & 1 & b \end{vmatrix}$	$\frac{2x^2 + 3x + 21}{(x+1)(x^2+9)} = \frac{2}{x+1} + \frac{3}{x^2+9}$ Hence, $I = 2\ln(x+1) - \arctan\left(\frac{3}{x}\right)$	$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}$ Point of intersection: (6,1, -2)	Consider $\lim_{t \to 3} \int_{t}^{5} \frac{1}{\sqrt{x-3}} dx$. Solution: $I = 2\sqrt{2}$	
$V = \pi \int_{2}^{4} \left(\sqrt{3 + x^{\frac{3}{2}}} \right)^{2} dx$ $= \pi \int_{2}^{4} 3 + x^{\frac{3}{2}} dx$ $= \pi \left[3x + \frac{2}{5} x^{\frac{5}{2}} \right]_{2}^{4}$ $= \left(6 - \frac{8}{5} (\sqrt{2} - 8) \right) \pi$	$\operatorname{arcosh}\left(\frac{x}{7}\right) + C$		$\overrightarrow{AB} = \begin{pmatrix} -2\\1\\1 \end{pmatrix}, \overrightarrow{AC} = \begin{pmatrix} 0\\0\\-1 \end{pmatrix}$ so equation of plane is $\mathbf{r} = \begin{pmatrix} 3\\2\\1 \end{pmatrix} + \lambda \begin{pmatrix} -2\\1\\1 \end{pmatrix} + \mu \begin{pmatrix} 0\\0\\-1 \end{pmatrix}$	8 (-0.5, 0) 4 2 2 4 (-0.5, 0) 2 4 6 (0, -0.5) 2