AQA A-Level Further Mathematics Warmup - Paper 22023

Prove by induction that $\sum_{r=1}^{n}=\frac{1}{3} n(n+1)(n+2)$	Find the derivative of $y=\arccos \left(2 x^{2}+3\right)$	Find the image of the point $(2,3)$ under a reflection in the line $y=x$ followed by a rotation, centre the origin, 60° anticlockwise.	$\text { Sketch } \frac{x^{2}}{25}+\frac{y^{2}}{9}=1$	Find a such that $\left(\begin{array}{l}3 \\ 1 \\ a\end{array}\right)$ is perpendicular to $\left(\begin{array}{c}6 \\ -2 \\ 4\end{array}\right)$
Solve $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 y}{x}=4 x$	State Viète's formulae for the cubic equation $a x^{3}+b x^{2}+c x+d=0$ with roots α, β and γ.	Given that $1-2 \mathrm{i}$ is a root of $p(x)=z^{3}-5 z^{2}+11 z-15$ find the other two roots.	Sketch the locus $\|\|z+3-2 i\|=\|z-1-\mathrm{i}\|$	Find the Maclaurin series of $y=\exp (2 x)$
Show that $(b-a)$ is a factor of $\left\|\begin{array}{ccc}b c & 1 & a \\ 1 & a & b \\ a c & 1 & b\end{array}\right\|$	Find $I=\int \frac{2 x^{2}+3 x+21}{(x+1)\left(x^{2}+9\right)} \mathrm{d} x$	Find the equation of the line passing through $A(2,1,4)$ and $B(4,1,1)$. Find the coordinate of intersection of the line through $A B$ with the line $\mathbf{r}=\left(\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{c} 5 \\ 0 \\ -4 \end{array}\right)$	Find $\int_{3}^{5} \frac{1}{\sqrt{x-3}} \mathrm{~d} x$	Sketch $r=3 \sin (2 \theta)$
Find the volume of revolution generated between the lines $x=2$ and $x=4$ when $y=\sqrt{3+x^{\frac{3}{2}}}$ is rotated 2π around the x-axis	Find $\int \frac{1}{\sqrt{x^{2}-49}} \mathrm{~d} x$	Sketch $y=\cosh (x)$ and $y=\operatorname{arcosh}(x)$	Find the equation of the plane passing through $A(3,2,1), B(1,3,2)$ and C(3,2,0)	Sketch $y=\frac{2 x+1}{3 x-2}$

AQA A-Level Further Mathematics Warmup - Paper 22023

Proof	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2 x}{\sqrt{-x^{4}-3 x^{2}-2}}$	$\left.\begin{array}{l} \text { Rotation: 60 anticlockwise } \\ \text { Reflection in } \left.y=x: \begin{array}{ll} 0 & 1 \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array}\right) \\ \text { So image is } \end{array}\right) .$		$a=-4$
Integrating factor: $I F=\mathrm{e}^{\int \frac{2}{x} \mathrm{~d} x}=x^{2}$ Hence, $y x^{2}=\int_{C} x^{4} \mathrm{~d} x$ and so $y=x^{2}+\frac{C}{x^{2}}$	$\begin{aligned} & \alpha+\beta+\gamma=\frac{-b}{a} \\ & \alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a} \\ & \alpha \beta \gamma=-\frac{d}{a} \end{aligned}$	$\begin{aligned} & z_{1}=1-2 \mathrm{i} \\ & z_{2}=1+2 \mathrm{i} \\ & z_{3}=3 \end{aligned}$		$1+2 x+2 x^{2}+\frac{4}{3} x^{3}$
$\begin{aligned} & \left\|\begin{array}{lll} b c & 1 & a \\ 1 & a & b \\ a & 1 & b \end{array}\right\|=\left\|\begin{array}{ccc} c(b-a) & 0 & a-b \\ 1 & a & b \\ a c & 1 & b \end{array}\right\| \\ & =(b-a)\left\|\begin{array}{ccc} c & 0 & -1 \\ 1 & a & b \\ a c & 1 & b \end{array}\right\| \end{aligned}$	$\frac{2 x^{2}+3 x+21}{(x+1)\left(x^{2}+9\right)}=\frac{2}{x+1}+\frac{3}{x^{2}+9}$ Hence, $I=2 \ln (x+1)-\arctan \left(\frac{3}{x}\right)$	$\mathbf{r}=\left(\begin{array}{l} 2 \\ 1 \\ 4 \end{array}\right)+\lambda\left(\begin{array}{c} 2 \\ 0 \\ -3 \end{array}\right)$ Point of intersection: $(6,1,-2)$	Consider $\lim _{t \rightarrow 3} \int_{t}^{5} \frac{1}{\sqrt{x-3}} \mathrm{~d} x$. Solution: $I=2 \sqrt{2}$	
$\begin{aligned} & V=\pi \int_{2}^{4}\left(\sqrt{3+x^{\frac{3}{2}}}\right)^{2} \mathrm{~d} x \\ &=\pi \int_{2}^{4} 3+x^{\frac{3}{2}} \mathrm{~d} x \\ &=\pi\left[3 x+\frac{2}{5} \frac{5}{2}\right]^{4} \\ &=\left(6-\frac{8}{5}(\sqrt{2}-8)\right)^{4} \pi \end{aligned}$	$\operatorname{arcosh}\left(\frac{x}{7}\right)+C$		$\begin{aligned} & \overrightarrow{A B}=\left(\begin{array}{c} -2 \\ 1 \\ 1 \end{array}\right), \overrightarrow{A C}=\left(\begin{array}{c} 0 \\ 0 \\ -1 \end{array}\right) \\ & \text { so equation of plane is } \\ & \mathbf{r}=\left(\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right)+\lambda\left(\begin{array}{c} -2 \\ 1 \\ 1 \end{array}\right)+\mu\left(\begin{array}{c} 0 \\ 0 \\ -1 \end{array}\right) \end{aligned}$	

