AQA A-Level Mathematics Warmup - Paper 32023

AQA A-Level Mathematics Warmup - Paper 32023 Answers

$\frac{9}{15}$	$\begin{aligned} & \text { Using the quotient rule with } \tan (x)=\frac{\sin (x)}{\cos (x)} . \\ & \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\cos (x) \cos (x)+\sin (x) \sin (x)}{\cos ^{2}(x)} \\ & =\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)} \\ & =\frac{1}{\cos ^{2}(x)} \\ & =\sec ^{2}(x) \end{aligned} \end{aligned}$	Always comments about dispersion and measures of location in questions like this. The median for females is lower than for males suggesting that females tend to buy cars with smaller engines. The spread (interquartile range) is larger for males than females.	a) $f(2)=-1.2274$ and $f(3)=5.8875$. Since there is a sign change and $f(x)$ is continuous in this interval there is a root in $[2,3]$. b) $x_{n+1}=x_{n}-\frac{x_{n}^{2} \ln \left(x_{n}\right)-4}{x_{n}+2 x_{n} \ln \left(x_{n}\right)}$ Using this iteration gives $x \approx 2.23202$	a) $\frac{21}{70}$ b) $\frac{1}{2}$
$\begin{aligned} \bar{x} & =4.4 \\ \sigma & =2.017 \\ \sum x & =154 \\ \sum x^{2} & =820 \\ Q_{1} & =2 \\ \text { median } & =4 \\ Q_{3} & =6 \end{aligned}$	$\begin{gathered} 5-2 \sqrt{6} \text { and } \\ 5+2 \sqrt{6} \end{gathered}$	Use the quotient rule with $\begin{gathered} u=3 x^{3}+2 x \text { and } \\ v=\sqrt{2 x+1} \text { to get } \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{15 x^{3}+9 x^{2}+2 x+2}{(2 x+1)^{\frac{3}{2}}} \end{gathered}$	a) 0.0834 b) $1-\mathrm{P}(X \leq 8)=0.0153$	
Divide the frequency by the width of the class interval.		-20	Let X be the number of people passing, then $X \sim \mathrm{~B}(30,0.75)$. Let $H_{0}: p=0.75, H_{1}: p<0.75$. Then $\mathrm{P}(X \leq 12)=5.008 \times 10^{-5}$. $5.008 \times 10^{-5}<0.05$ so at the 5% level there is evidence to reject the null hypothesis in favour of the alternative. The head of science should be concerned.	83
a) 0 b) 0.2525 c) $0.9772-0.6305=0.3467$ d) 119.24	$\begin{aligned} \int 2 x \sqrt{4 x^{2}-16} \mathrm{~d} x & =\int 4 x \sqrt{x^{2}-4} \mathrm{~d} x \\ & =\frac{4}{3}\left(x^{2}-4\right)^{\frac{3}{2}}+C \end{aligned}$	3	- There are a fixed number, n, of trials. - Each trial is independent. - Two possible outcomes to each trial - success or failure - Fixed probably of success $X \sim \mathrm{~B}(12,0.35)$ where X is the discrete random variable "number of games hitting high score"	$x=\frac{-(4 \log (2)+\log (5))}{2 \log (2)-\log (5)}$

