A particle has displacement given by the vector $\binom{3 \cos (t)}{4 \mathrm{e}^{-2 t}}$ find the velocity	$I=\int \frac{1}{x \sqrt{\ln (3 x)+2}} \mathrm{~d} x$	Sketch $y=\cot (x)$	What does the word "uniform" mean in a mechanics context?	Find the magnitude and direction of the vector $\binom{4}{6}$
	For the velocity-time graph to the left, find the acceleration between 6 and 8 seconds.		Find the area between the curve with parametric equations $x=t^{2}$ and $y=\sin (2 t)+2$ and the lines $x=0$ and $x=4$.	An explosion of TNT produces an hemispherical shock wave above flat ground. Given that the detonation velocity of TNT is $400 \mathrm{~ms}^{-1}$ and ignoring effects of air resistance, find the rate at which the volume of the hemispherical shock wave is increasing 100 m from the blast blast.
Find the total distance travelled.	Find the average speed for the duration of the motion.	A box of mass 2 kg is held on a rough inclined plane at an angle α by a force parallel to the plane of 2 N . Given that $\sin (\alpha)=\frac{3}{5}$ find the coefficient of friction between the box and the plane.	Draw a labelled force diagram for the situation described to the left.	A marble rolls off a bookshelf that 1.4 m high. Find the time taken for it to reach the ground.
Find the equation of the normal to $\begin{gathered} y=2 x \cos (x) \text { at } \\ x=\frac{\pi}{2} \end{gathered}$	Find the sum of the first 10 terms of arithmetic sequence with first term 4 and common difference 2.5	Find the area remaining when the triangle is removed from the sector.	Solve $\begin{aligned} & 2 \sin ^{2}(x)+5 \cos (x)-4=0 \\ & \text { for } 0^{\circ} \leq x \leq 360^{\circ} \end{aligned}$	Find the first 4 terms in the binomial expansion for $(3+2 x)^{-2}$

$\binom{-3 \sin (t)}{-8 \mathrm{e}^{-2 t}}$	$\begin{aligned} & \text { Use the substitution } \\ & \begin{array}{l} u=\ln (3 x)+2 \text { to obtain } \\ I=2 \sqrt{\ln (3 x)+2} \end{array} \end{aligned}$		The mass is evenly spread throughout the body.	$\begin{gathered} \text { Magnitude: } \\ \sqrt{4^{2}+6^{2}}=2 \sqrt{13} \\ \text { Direction: } \\ \theta=\arctan \left(\frac{3}{2}\right) \approx 56.3^{\circ} \end{gathered}$ above the positive x-axis
	$-1 \mathrm{~ms}^{-1}$		$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=2 t \text { so the area is } \\ & \int_{0}^{4} 2 t(\sin (2 t)+2) \mathrm{d} t=33.49 \end{aligned}$ square units.	$\begin{aligned} & \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} t} \\ &=2 \pi r^{3} \times 400 \\ & \text { When } r=100 \\ & \frac{\mathrm{~d} V}{\mathrm{~d} t} \approx 25132741 \mathrm{~m}^{3 \mathrm{~s}-1} \end{aligned}$
Split into 4 sections. $9+18+10+4=41$	$\begin{gathered} \text { Using } v=\frac{s}{t} \\ \text { Average speed }=4.1 \\ \mathrm{~ms}^{-1} \end{gathered}$	Resolve perpendicular to the plane: $R=2 \cos (\alpha)=\frac{8}{5}$ Resolve parallel to the plane $\begin{gathered} F=2-2 \sin (\alpha)=\frac{4}{5} \\ \text { So } \mu=\frac{F}{R}=\frac{1}{2} \end{gathered}$		$\frac{2}{7} \text { second }$
$y=\frac{x}{\pi}-\frac{1}{2}$	$\begin{aligned} S_{n} & =\frac{1}{2}[2 a+(n-1) d] \\ S_{1} 0 & =\frac{1}{2}[2 \times 4+9 \times 2.5] \\ & =\frac{61}{4} \end{aligned}$	$\begin{gathered} \text { Area of sector }= \\ \frac{1}{2} \times 3^{2} \times \frac{\pi}{3}=\frac{3 \pi}{2} \\ \text { Area of triangle }= \\ \frac{1}{2} \times 3 \times 3 \times \sin \left(\frac{\pi}{3}\right)=\frac{9 \sqrt{3}}{4} \\ \text { Area remaining } \approx 0.81 \\ \hline \end{gathered}$	$\begin{gathered} \text { Using } \sin ^{2}(x)+\cos ^{2}(x)=1 \\ \text { we obtain } \\ 2 \cos ^{2}(x)-5 \cos (x)+2=0 \\ \text {. Hence } \cos (x)=2 \text { or } \\ \cos (x)=\frac{1}{2} \text {. So } x=60^{\circ}, 300^{\circ} \end{gathered}$	$\frac{1}{9}-\frac{4}{27} x+\frac{4}{27} x^{2}-\frac{32}{243} x^{3}$

