AQA A-Level Mathematics Warmup - Paper 1 2023

Sketch $y = x^2 + x - 12 $	Find the sum of the first 10 terms of the arithmetic series with first term 23 and common difference 6	(x - 1) is a factor of $p(x) = x^3 + bx^2 + 2x - 8$ Find <i>b</i> and then fully factorise $p(x)$.	Show that $y = x^2 + 6x + 13$ is greater than zero for all x	Find $\int \sin^3(x) \mathrm{d}x$
Rationalise the denominator for $\frac{3}{4+\sqrt{7}}$	Simplify $2 \log_2(x^2) + \log_2(x+3) - \log_2(x^3)$	Differentiate $y = \cos(x)$ from first principles.	Find the radius and centre of the circle $x^2 - 6x + y^2 + 8y = 0$	Find the values of k for which the quadratic $x^2 + (k + 1)x + 3k$ has a repeated root.
Sketch on the same axes: $y = \cos(x)$ $y = 2\cos(x)$ $y = \cos\left(2x - \frac{\pi}{2}\right)$	Find the normal to the curve $y = \tan(x)$ at $x = \frac{\pi}{3}$	What are the three Pythagorean trigonometric identities?	Find $\frac{dy}{dx}$ for $y = 2x^2 \sin(3x)$	Find the Cartesian form of the curve with parametric equations $x = 2 + 3\sin(\theta)$ and $y = -4 + 3\cos(\theta)$
Express $5\sin(x) - 5\sqrt{3}\cos(x)$ in the form $R\sin(x - \alpha)$	Solve the simultaneous equations $y = x^2 + 3x - 10$ and y = -x + 2	Find $\int 3x\sqrt{2x+3} \mathrm{d}x$	Find an expression for the Newton-Raphson formula to find a root of the equation sin(x)ln(x) = 0	How many solutions has the equation $\cos(3\theta) = \frac{1}{2}$ got in the range $0^\circ \le \theta \le 360^\circ$

	$S_{10} = \frac{10}{2} \left[2 \times 23 + 9 \times 6 \right]$ = 500	b = 5 p(x) = (x - 1)(x + 2)(x + 4)	$x^{2} + 6x + 13 = (x + 3)^{2} + 4$ > 0 $\forall x$	$\frac{1}{12}\left(\cos(3x) - 9\cos(x)\right)$
$\frac{4-\sqrt{7}}{3}$	$\log_2\left(\frac{x^4(x+3)}{x^3}\right) = \log_2(x(x+3))$	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= lim_{h \to 0} \frac{cos(x+h) - cos(x)}{h}$ $= \lim_{h \to 0} \frac{cos(x)cos(h) - sin(x)sin(h) - cos(x)}{h}$ $= \lim_{h \to 0} cos(x) \left(1\frac{h^2}{2}\right) - sin(x)h - cos(x)$ $= \lim_{h \to 0} \frac{h}{2} cos(x) - sin(x)$ $= - sin(x)$	Centre: (3, – 4) Radius: 5	$5 - 2\sqrt{6}$ and $5 + 2\sqrt{6}$
	$y = -\frac{x}{4} + \frac{\pi}{12} + \sqrt{3}$	sin2(x) + cos2(x) = 1 sec2(x) = 1 + tan2(x) cosec2(x) = 1 + cot2(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\left(3x^2\cos(x) + 2x\sin(3x)\right)$	$(x-2)^2 + (y+4)^2 = 9$
$10\sin\left(x-\frac{\pi}{3}\right)$	(-6,8) and (2,0)	Integrate by substitution with u = 2x + 3 to get $\frac{3}{5}(x - 1)(2x + 3)^{\frac{3}{2}} + C$	$x_{n+1} = x_n - \frac{\sin(x_n)\ln(x_n)}{\frac{\sin(x_n)}{x_n} + \ln(x_n)\cos(x_n)}$	6 solutions.

AQA A-Level Mathematics Warmup - Paper 1 2023