AQA A-Level Mathematics Warmup - Paper 12023

Sketch $y=\left\|x^{2}+x-12\right\|$	Find the sum of the first 10 terms of the arithmetic series with first term 23 and common difference 6	$(x-1)$ is a factor of $p(x)=x^{3}+b x^{2}+2 x-8$ Find b and then fully factorise $p(x)$.	Show that $y=x^{2}+6 x+13$ is greater than zero for all x	Find $\int \sin ^{3}(x) d x$
Rationalise the denominator for $\frac{3}{4+\sqrt{7}}$	Simplify $2 \log _{2}\left(x^{2}\right)+\log _{2}(x+3)-\log _{2}\left(x^{3}\right)$	Differentiate $y=\cos (x)$ from first principles.	Find the radius and centre of the circle $x^{2}-6 x+y^{2}+8 y=0$	Find the values of k for which the quadratic $x^{2}+(k+1) x+3 k$ has a repeated root.
Sketch on the same axes: $\begin{array}{r} y=\cos (x) \\ y=2 \cos (x) \\ y=\cos \left(2 x-\frac{\pi}{2}\right) \end{array}$	Find the normal to the curve $y=\tan (x)$ at $x=\frac{\pi}{3}$	What are the three Pythagorean trigonometric identities?	$\begin{aligned} & \text { Find } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { for } \\ & y=2 x^{2} \sin (3 x) \end{aligned}$	Find the Cartesian form of the curve with parametric equations $x=2+3 \sin (\theta)$ and $y=-4+3 \cos (\theta)$
Express $5 \sin (x)-5 \sqrt{3} \cos (x)$ in the form $R \sin (x-\alpha)$	Solve the simultaneous equations $\begin{gathered} y=x^{2}+3 x-10 \text { and } \\ y=-x+2 \end{gathered}$	Find $\int 3 x \sqrt{2 x+3} \mathrm{~d} x$	Find an expression for the Newton-Raphson formula to find a root of the equation $\sin (x) \ln (x)=0$	How many solutions has the equation $\cos (3 \theta)=\frac{1}{2}$ got in the range $0^{\circ} \leq \theta \leq 360^{\circ}$

