A - Level Maths 15 Minute Boost 8

If y is a function of t and t is a function of x then the chain rule states that	
The length of the vector $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is	
$\int \frac{1}{a x+b} \mathrm{~d} x$	
How do you solve the differential equation dy $\mathrm{d} x$$=f(x) g(y) ?$	
A parametric form of the equation of a circle with centre (a, b) and radius r is:	

1 a) Expand $(3+2 x)^{\frac{1}{5}}$ up to the term including x^{3}
b) Use your expansion in (a) to approximate $3.02^{\frac{1}{5}}$

2 Newton's law of cooling states that the rate at which the temperature of a hot body decreases is proportional to the difference between the temperature of the body and that of the surroundings. Given that $\theta^{\circ} C$ is the excess of the temperature of the the body over the surroundings at time t minutes after the start, show that the relationship between θ and t is of the form $\theta=A \mathrm{e}^{-k t}$ where A and k are constants.

