A - Level Maths 15 Minute Boost 5

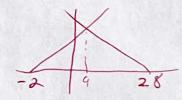
$\int \sec(x)\tan(x) \mathrm{d}x =$	sec(x)+C
What does the mechanics modelling assumption "smooth" mean?	That is no friction
How can you find the area of a general triangle ABC ?	Area= 1 absin (c)
What is the Newton- Raphson iterative formula?	Xn+1 = Xn - f(xn) +'(xn)
How do you calculate the moment of a force, F , about a point P ?	Force X perpendicular ditant from the cut a artism of the same to the points P.
dv	

1) Find $\frac{dy}{dx}$ for the curve given implicitly by $3x^2y + 2y^2 = 7$

Disposition with respect to sc,

$$6xy + 3x^{2}dy + 4xydy = 0$$

$$= 2 \frac{dy}{dx}(3x^{2} + 4xy) = -6xy$$


$$\frac{dy}{dx} = -\frac{6xy}{3x^{2} + 4y}$$

- **2** Let l_1 be the line $l_1 : y = 3x + 6$.
 - a) Find the equation of the line, l_2 which is perpendicular to l_1 passing

b) Find the coordinate of intersection of
$$l_1$$
 and l_2 and name this A .

$$-\frac{1}{3}x + \frac{1}{3}x = \frac{3}{3}x + \frac{1}{3}x = \frac{3}{3}x + \frac{1}{3}x = \frac{1}{3$$

c) Let B be the point where l_1 crosses the x- axis and C be the point where l_2 crosses the x-axis. Find the area of triangle ABC.

