A-Level Calculated Colouring 2020

A-Level Calculated Colouring 2020

- **1.** Find the largest positive root of $x^2 8x + 12 = 0$
- 2. The denominator when rationalising $\frac{3}{4+\sqrt{6}}$.
- 3. The radius squared for the circle $x^2 6x + y^2 4y + 4 = 0$.
- **4.** The x-coordinate of the local maximum of the function $f(x) = x^3 24x^2 + 45x + 4$.
- 5. The gradient of the straight line 12x 2y + 6 = 0.
- 6. The point (x, x + 1), $x \in \mathbb{Z}^+$, lies on the circle $x^2 10x + y^2 10y + 25 = 0$. Find the y- coordinate for the largest x.
- 7. (x + 5) and (x + 2) are both factors of the polynomial $f(x) = x^3 + ax^2 + bx + 10$. Find b, then subtract 2 from the answer.
- 8. The coefficient of x^3 in the expansion of $(1 + 2x)^n$ is 160. Find n.
- **9.** Evaluate $\left(\frac{1}{5}\right)^{-2}$.
- **10.** The repeated root of $2x^3 31x^2 + 112x + 64 = 0$.
- **11.** The x solution to the pair of simultaneous equations 3x + 2y = 21 and 12x y = 3.
- **12.** Find a when $\sqrt{180}$ is written in the form $a\sqrt{5}$.
- **13.** The highest common factor of 270

and 770.

- 14. The radius of the unit circle.
- **15.** Double the area of the triangle with vertices A(2,2), B(8,2) and C(-1,8).
- **16.** $7776^{\frac{2}{5}}$.
- 17. The power of z when you simplify $\frac{xz^3}{v^4} \times \frac{y^2}{3xz^2}$
- **18.** (x + 5) and (x + 2) are both factors of the polynomial $f(x) = x^3 + ax^2 + bx + 10$. Find a.
- **19.** The x-intercept of the line passing through (13, -6) parallel to the line -3x + y = -30.
- **20.** The solution of $2^x = 4^5$.
- **21.** The *y*-coordinate of the turning point of $y = x^2 6x + 15$.
- **22.** The x-coordinate of the midpoint of the line segment joining (-3,1) and (5,10).
- **23.** Let A and B be the intersections of the line 3x + 10y = 30 with the x- and y- axes respectively. Find the area of the triangle OAB where O is the origin.
- **24.** Find the y-coordinate of largest magnitude of the intersection points of the circle $x^2 + y^2 = 169$ and the line 4x 5y = -40. Subtract 11 from the answer.
- **25.** A triangle ABC has |AB| = x, |AC| = x + 3, $\angle CAB = 60^{\circ}$ and

A-Level Calculated Colouring 2020

area $\frac{27\sqrt{3}}{2}$ square units. Find x.

- **26.** Half of the x-intercept of the tangent to the circle $(x-5)^2 + (y-5)^2 = 25$ at the point (8,9).
- **27.** The derivative of $f(x) = 2x^3 + 6x^2 + 5x + 4$ evaluated when $x = \frac{1}{\sqrt{3}} 1$.
- **28.** The *y* solution to the pair of simultaneous equations 3x + 2y = 21 and 12x y = 3.
- **29.** The denominator of $\frac{1}{\sqrt{8}}$ when rationalised.
- **30.** A square number that is a multiple of the answer to Question 38.
- **31.** The number of solutions to the equation $cos(x) = \frac{\sqrt{3}}{2}$ in the interval $180^{\circ} \le x \le 360^{\circ}$
- **32.** One quarter of the discriminant of $y = 2x^2 + 8x + 3$.
- **33.** The x-coordinate of the minimum point of the function $f(x) = x^3 24x^2 + 45x + 4$.
- **34.** Find p such that $\sqrt{18} + \sqrt{50} \sqrt{98}$ can be written on the form $p\sqrt{2}$.
- **35.** The y- intercept of the straight line 2x + 3y = 18.
- **36.** The x-intercept of the line perpendicular to 2x + 3y = 18

which passes through (12,3).

37. k such that the point (5,4) lies on the circle

$$(x-k)^2 + (y-k)^2 = 25.$$

38. The y-coordinate of the centre of the circle

$$x^2 + 2x + y^2 - 18y + 62 = 0.$$

- **39.** Two more than the absolute value of the coefficient of x when expanding $(x^2 + 4x + 3)(x^2 5x 2)$.
- **40.** $2 \times {4 \choose 2} + {7 \choose 2} + {3 \choose 1}$ (these are binomial coefficients).

Answer	Colour
6	Brown
10	Yellow
9	Grey
1	Blue
15	Red
8	Green
25	Light Green
36	Orange