Christmas Calculated Colouring - C1

Tom Bennison

December 20, 2015

1 Introduction

Each question identifies a region or regions on the picture. Work out the answer and use the key to work out which colour to shade that region.

2 The Questions

- 1. $\int_0^2 2x + \frac{1}{2} dx$.
- 2. The coefficient of the x term of $\frac{d}{dx} (7x^3 + 3x^2 + 5x)$.
- 3. Find x if $9^{2x} = 27^{x+1}$.
- 4. $64^{\frac{2}{3}}$.
- 5. The y intercept of the line connecting (2,4) and (5,1).
- 6. The gradient of the line y = 5x + 3
- 7. $\sqrt[5]{243}$
- 8. The b in the completed square form $(a(x+b)^2+c)$ of the quadratic $3x^2+36x+8$.
- 9. The discriminant of the quadratic $x^2 4x + 4$.
- 10. The third term of the sequence generated by the recurrence relation $x_{n+1} = x_n^2$ where the first term is $x_1 = 2$.
- 11. The greatest root of the equation $x^2 3x 10 = 0$.
- 12. $27^{\frac{1}{3}}$.
- 13. The x coordinate of the turning point of $y = x^2 10x + 25$.
- 14. The x solution to the following pair of equations:

$$x + y = 9$$
$$3x + 4y = 33$$

15. The value you obtain when you evaluate $y = 3x^3 - 7x + 7$ at x = 1.

- 16. The y coordinate of the stationary point of $y = x^2 8x + 32$
- 17. Gradient of the tangent to the curve $y = x^3 + 2$ at x = 1.
- 18. Absolute value of the constant term in the equation of the tangent to the curve $y = x^3 + 4x^2 + 3$ at x = 1.
- 19. The sum of the 3rd and 4th triangular numbers.
- 20. The distance between the points (21, 39) and (24, 35).
- 21. The y solution to the following pair of equations:

$$x + y = 9$$
$$3x + 4y = 33$$

.

- 22. The gradient of the normal to the line $y = -\frac{1}{5}x + 10$ which passes through the point (1,8).
- 23. The y-intercept of the normal to the line $y = -\frac{1}{5}x + 10$ which passes through the point (1,8).
- 24. $\sqrt[6]{46656}$.
- 25. The coefficient of the x^2 term in $(x+1)^3$.
- 26. $\frac{1}{4^{-2}}$.
- 27. The a when you write $\sqrt{63}$ in the form $a\sqrt{b}$.
- 28. The y intercept of the straight line which intersects $y = x^2$ at x = -2 and x = 2.5.
- 29. The coefficient of the x^3 term when you evaluate $\int 18x^2 dx$.
- 30. The y coordinate of the point of intersection of the line y = -3x + 21 with the line $y = \frac{6}{7}x + \frac{12}{7}$.
- 31. The x coordinate of the point of intersection of the line y=-3x+21 with the line $y=\frac{6}{7}x+\frac{12}{7}$.
- 32. The b when you write $\sqrt{27}$ in the form $a\sqrt{b}$.
- 33. The a when you write $\sqrt{27}$ in the form $a\sqrt{b}$.
- 34. The gradient of the line joining the points (1,3) and (3,13).
- 35. The second order derivative of $y = \frac{1}{3}x^3 + \frac{9}{2}x^2 + 18x$ evaluated at x = -3.
- 36. The largest integer satisfying $8(2x-4)-9x \le 3$.
- 37. The denominator when you have rationalised the denominator of the following expression: $\frac{1}{\sqrt{11}-4}$.
- 38. The third term of the sequence given by $u_n = 6n 2$.

- 39. $\int_0^5 \frac{3}{25} x^2 \, \mathrm{d}x$.
- 40. The power of x when you simplify $3x^2y \times 6x^3y^5$.
- 41. The a when you write $\sqrt{50}$ in the form $a\sqrt{b}$.
- 42. The power of y when you simplify $3x^2y \times 6x^3y^5$.
- 43. Let $f(x) = x^2 8x + 20$. Find the y coordinate of the turning point of f(x+1).
- 44. The x solution of the following pair of simultaneous equations:

$$x + 3y = 11$$
$$4x - 7y = 6$$

.

45. The smallest x value that satisfies the following pair of simultaneous equations:

$$x + y = 11$$
$$xy = 30$$

.

- 46. The constant appearing in the expanded form of $(x-2)^4$.
- 47. The largest b value that solves the following pair of simultaneous equations:

$$3a + b = 8$$
$$3a^2 + b^2 = 28$$

.

48. The largest a value that solves the following pair of simultaneous equations:

$$3a + b = 8$$
$$3a^2 + b^2 = 28$$

.

- 49. The y-intercept of the line joining (-1,7) to $(\frac{1}{2},4)$.
- 50. For the function $f(x) = x^2 2x + 4$ what is the value a such that f(x+a) has the turning point (-2,3).
- 51. Find the common difference of the arithmetic series with second term 6 and the sum of the first four terms being 34.
- 52. The positive root of $y = 2x^2 9x 18$.
- 53. A third of the y-intercept of the parabola $y = x^2 6x + 9$.
- 54. The derivative of $y = \frac{3}{2}x^2 + 3x$ evaluated at x = 4.

- 55. The positive y coordinate for a point of intersection of the curve $y=x^2+1$ and the line $y=-\frac{1}{2}x+6$.
- 56. The denominator (when expressed as an improper fraction in simplified form) of the area enclosed by the x-axis, the curve $x = y^2 + 4$ and the tangent to the curve at the point T(8,2).
- 57. The 4th term of an arithmetic sequence such that the second term is 6 and the sum of the first 5 terms is 55.
- 58. The value you obtain when you calculate $\int_2^4 2x^3 \ \mathrm{d}x$ then divide by 8.
- 59. $\sqrt[3]{125}$
- 60. Given that $t^{\frac{1}{3}} = y$ what is the coefficient of y^{-1} in the expression $6t^{-\frac{1}{3}}$
- 61. With reference to Figure 1 which shows a sketch of the curve $y = 2x x^2$ meeting the line y = -2x at the origin O and the point P. Determine the coordinates of P and so find the area of the shaded region. Divide your answer by $\frac{32}{9}$.
- 62. The least root of the quadratic $y = x^2 12x + 35$.
- 63. The smallest positive root of the cubic $y = x^3 4x^2 17x + 60$.
- 64. The value of the second term of the series defined by $a_1 = 2$, $a_{n+1} = 2a_n 1$.
- 65. Curve C is a function of x (i.e. y = f(x)) such that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^3 + 2x - 7$$

Determine the curve C given that the point P(2,4) lies on C. Hence find an equation for the normal at P in the form ax + by + c = 0, where a, b, c are integers. Your answer is the value of b

- 66. The straight line l_1 has equation y = 3x 6. The straight line l_2 is such that it is perpendicular to l_1 and passes through the point (6,2). Given that l_1 crosses the x-axis at A, l_2 crosses the x-axis at B and that l_1 intersects l_2 at C. Find the area of the triangle ABC.
- 67. For the series with first term 9 and common difference 6, what is the value l such that the sum of the first l terms is 105.
- 68. The value a when you express $\sqrt{1575}$ in the form $a\sqrt{b}$.
- 69. Given that $\frac{dy}{dx} = 6x 3x^2$, and $x \ge 1$, and also that y = 6 at x = 1, find the greatest possible value of y.
- 70. The simplified form of $\frac{\sqrt{20}}{2}$ squared.
- 71. The coefficient of the x^2 term when you expand $(3x-5)x^2$.
- 72. $2 \times 256^{\frac{1}{4}}$

- 73. The value you obtain when you multiply the x coefficient and the x^2 coefficient when you work out $\frac{d}{dx}(4x^2 + \frac{2}{3}x^3)$.
- 74. The coefficient of the x^4 term when you expand $(1+x)^6$.
- 75. Let $f(x) = x^2 + 4x + 6$. Find the value of a such that af(x) has a turning point with y coordinate 8.
- 76. The b when you express $\sqrt{125}$ in the form $a\sqrt{b}$.
- 77. $\frac{1}{40} \sum_{i=1}^{15} 5i$.
- 78. The least positive root of $x^3 14x^2 + 63x 90$.
- 79. $\int_0^4 \frac{x^3}{4} \, \mathrm{d}x$.
- 80. The product of the roots of the quadratic $x^2 16x + 15$.
- 81. The a When $5\sqrt{6} 2\sqrt{24} + \sqrt{294}$ is expressed in the form $a\sqrt{b}$.
- 82. The gradient of the curve $y = 2x^4 + 2x^3 + x$ evaluated at x = 1.
- 83. The greatest value of v such that u and v solve the following pair of simultaneous equations:

$$2u + 2v = 16$$
$$uv = 15$$

- 84. If the sum of the first n terms of a series is n^2+3n , by finding an expression for the nth term (or otherwise) find the first term of the underlying series.
- 85. What is the value of a when you write $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ in the form $a+b\sqrt{c}$.
- 86. The value of b when you write $\sqrt{75} + 2\sqrt{48} 5\sqrt{12}$ in the form $a\sqrt{b}$.
- 87. The most positive root of the cubic $x^3 14x^2 + 63x 90$.
- 88. The sum of the roots of the quadratic $x^2 5x + 6$.
- 89. The gradient of the line passing through the points (-2, -2) and (-1, 2).
- 90. The common difference of the series 9, 14, 19, 24,
- 91. The first term of the series with common difference 6 and fourth term 33.
- 92. The product of the roots of the quadratic $x^2 10x + 16$.
- 93. The y coordinate of the common point of intersection of the line $y = -\frac{1}{2}x + 6$ and the parabolas $y = x^2 + 1$ and $y = x^2 8x + 17$.
- 94. The coefficient of the x^4 term when you differentiate $y = 3x^5 \frac{4}{x^2}$.
- 95. The value of the smallest u such that u and v solve the following pair of simultaneous equations:

$$2u + 2v = 16$$
$$uv = 15$$

Figure 1: Picture for Question 61

- 96. The b in the completed square form $(a(x+b)^2+c)$ of the quadratic $x^2+10x+23$.
- 97. The power of z when you simplify $3x^2yz \times 2yz^3 \times x^2z^{-1}$.
- 98. $\frac{1}{2}\sqrt{256}$
- 99. The third term of the arithmetic series with second term 9 and the sum of the first 10 terms is 335.
- 100. The x coordinate of the point of intersection of the lines $l_1: 7x+2y=25$ and $l_2: 9x-7y=13$.