Christmas Calculated Colouring - C1

Tom Bennison

December 20, 2015

1 Introduction

Each question identifies a region or regions on the picture. Work out the answer and use the key to work out which colour to shade that region.

2 The Questions

1. $\int_{0}^{2} 2 x+\frac{1}{2} \mathrm{~d} x$.
2. The coefficient of the x term of $\frac{\mathrm{d}}{\mathrm{d} x}\left(7 x^{3}+3 x^{2}+5 x\right)$.
3. Find x if $9^{2 x}=27^{x+1}$.
4. $64^{\frac{2}{3}}$.
5. The y intercept of the line connecting $(2,4)$ and $(5,1)$.
6. The gradient of the line $y=5 x+3$
7. $\sqrt[5]{243}$
8. The b in the completed square form $\left(a(x+b)^{2}+c\right)$ of the quadratic $3 x^{2}+$ $36 x+8$.
9. The discriminant of the quadratic $x^{2}-4 x+4$.
10. The third term of the sequence generated by the recurrence relation $x_{n+1}=$ x_{n}^{2} where the first term is $x_{1}=2$.
11. The greatest root of the equation $x^{2}-3 x-10=0$.
12. $27^{\frac{1}{3}}$.
13. The x coordinate of the turning point of $y=x^{2}-10 x+25$.
14. The x solution to the following pair of equations:

$$
\begin{aligned}
x+y & =9 \\
3 x+4 y & =33
\end{aligned}
$$

15. The value you obtain when you evaluate $y=3 x^{3}-7 x+7$ at $x=1$.
16. The y coordinate of the stationary point of $y=x^{2}-8 x+32$
17. Gradient of the tangent to the curve $y=x^{3}+2$ at $x=1$.
18. Absolute value of the constant term in the equation of the tangent to the curve $y=x^{3}+4 x^{2}+3$ at $x=1$.
19. The sum of the 3 rd and 4 th triangular numbers.
20. The distance between the points $(21,39)$ and $(24,35)$.
21. The y solution to the following pair of equations:

$$
\begin{aligned}
x+y & =9 \\
3 x+4 y & =33
\end{aligned}
$$

22. The gradient of the normal to the line $y=-\frac{1}{5} x+10$ which passes through the point $(1,8)$.
23. The y-intercept of the normal to the line $y=-\frac{1}{5} x+10$ which passes through the point $(1,8)$.
24. $\sqrt[6]{46656}$.
25. The coefficient of the x^{2} term in $(x+1)^{3}$.
26. $\frac{1}{4^{-2}}$.
27. The a when you write $\sqrt{63}$ in the form $a \sqrt{b}$.
28. The y intercept of the straight line which intersects $y=x^{2}$ at $x=-2$ and $x=2.5$.
29. The coefficient of the x^{3} term when you evaluate $\int 18 x^{2} \mathrm{~d} x$.
30. The y coordinate of the point of intersection of the line $y=-3 x+21$ with the line $y=\frac{6}{7} x+\frac{12}{7}$.
31. The x coordinate of the point of intersection of the line $y=-3 x+21$ with the line $y=\frac{6}{7} x+\frac{12}{7}$.
32. The b when you write $\sqrt{27}$ in the form $a \sqrt{b}$.
33. The a when you write $\sqrt{27}$ in the form $a \sqrt{b}$.
34. The gradient of the line joining the points $(1,3)$ and $(3,13)$.
35. The second order derivative of $y=\frac{1}{3} x^{3}+\frac{9}{2} x^{2}+18 x$ evaluated at $x=-3$.
36. The largest integer satisfying $8(2 x-4)-9 x \leq 3$.
37. The denominator when you have rationalised the denominator of the following expression: $\frac{1}{\sqrt{11}-4}$.
38. The third term of the sequence given by $u_{n}=6 n-2$.
39. $\int_{0}^{5} \frac{3}{25} x^{2} \mathrm{~d} x$.
40. The power of x when you simplify $3 x^{2} y \times 6 x^{3} y^{5}$.
41. The a when you write $\sqrt{50}$ in the form $a \sqrt{b}$.
42. The power of y when you simplify $3 x^{2} y \times 6 x^{3} y^{5}$.
43. Let $f(x)=x^{2}-8 x+20$. Find the y coordinate of the turning point of $f(x+1)$.
44. The x solution of the following pair of simultaneous equations:

$$
\begin{aligned}
x+3 y & =11 \\
4 x-7 y & =6
\end{aligned}
$$

45. The smallest x value that satisfies the following pair of simultaneous equations:

$$
\begin{aligned}
x+y & =11 \\
x y & =30
\end{aligned}
$$

46. The constant appearing in the expanded form of $(x-2)^{4}$.
47. The largest b value that solves the following pair of simultaneous equations:

$$
\begin{array}{r}
3 a+b=8 \\
3 a^{2}+b^{2}=28
\end{array}
$$

48. The largest a value that solves the following pair of simultaneous equations:

$$
\begin{aligned}
& 3 a+b=8 \\
& 3 a^{2}+b^{2}=28
\end{aligned}
$$

49. The y-intercept of the line joining $(-1,7)$ to $\left(\frac{1}{2}, 4\right)$.
50. For the function $f(x)=x^{2}-2 x+4$ what is the value a such that $f(x+a)$ has the turning point $(-2,3)$.
51. Find the common difference of the arithmetic series with second term 6 and the sum of the first four terms being 34 .
52. The positive root of $y=2 x^{2}-9 x-18$.
53. A third of the y-intercept of the parabola $y=x^{2}-6 x+9$.
54. The derivative of $y=\frac{3}{2} x^{2}+3 x$ evaluated at $x=4$.
55. The positive y coordinate for a point of intersection of the curve $y=x^{2}+1$ and the line $y=-\frac{1}{2} x+6$.
56. The denominator (when expressed as an improper fraction in simplified form) of the area enclosed by the x-axis, the curve $x=y^{2}+4$ and the tangent to the curve at the point $T(8,2)$.
57. The 4 th term of an arithmetic sequence such that the second term is 6 and the sum of the first 5 terms is 55 .
58. The value you obtain when you calculate $\int_{2}^{4} 2 x^{3} \mathrm{~d} x$ then divide by 8 .
59. $\sqrt[3]{125}$
60. Given that $t^{\frac{1}{3}}=y$ what is the coefficient of y^{-1} in the expression $6 t^{-\frac{1}{3}}$
61. With reference to Figure 1 which shows a sketch of the curve $y=2 x-x^{2}$ meeting the line $y=-2 x$ at the origin O and the point P. Determine the coordinates of P and so find the area of the shaded region. Divide your answer by $\frac{32}{9}$.
62. The least root of the quadratic $y=x^{2}-12 x+35$.
63. The smallest positive root of the cubic $y=x^{3}-4 x^{2}-17 x+60$.
64. The value of the second term of the series defined by $a_{1}=2, a_{n+1}=$ $2 a_{n}-1$.
65. Curve C is a function of x (i.e. $y=f(x)$) such that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{3}+2 x-7
$$

Determine the curve C given that the point $P(2,4)$ lies on C. Hence find an equation for the normal at P in the form $a x+b y+c=0$, where a, b, c are integers. Your answer is the value of b
66. The straight line l_{1} has equation $y=3 x-6$. The straight line l_{2} is such that it is perpendicular to l_{1} and passes through the point $(6,2)$. Given that l_{1} crosses the x-axis at A, l_{2} crosses the x-axis at B and that l_{1} intersects l_{2} at C. Find the area of the triangle $A B C$.
67. For the series with first term 9 and common difference 6 , what is the value l such that the sum of the first l terms is 105 .
68. The value a when you express $\sqrt{1575}$ in the form $a \sqrt{b}$.
69. Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x-3 x^{2}$, and $x \geq 1$, and also that $y=6$ at $x=1$, find the greatest possible value of y.
70. The simplified form of $\frac{\sqrt{20}}{2}$ squared.
71. The coefficient of the x^{2} term when you expand $(3 x-5) x^{2}$.
72. $2 \times 256^{\frac{1}{4}}$
73. The value you obtain when you multiply the x coefficient and the x^{2} coefficient when you work out $\frac{d}{\mathrm{~d} x}\left(4 x^{2}+\frac{2}{3} x^{3}\right)$.
74. The coefficient of the x^{4} term when you expand $(1+x)^{6}$.
75. Let $f(x)=x^{2}+4 x+6$. Find the value of a such that $a f(x)$ has a turning point with y coordinate 8 .
76. The b when you express $\sqrt{125}$ in the form $a \sqrt{b}$.
77. $\frac{1}{40} \sum_{i=1}^{15} 5 i$.
78. The least positive root of $x^{3}-14 x^{2}+63 x-90$.
79. $\int_{0}^{4} \frac{x^{3}}{4} \mathrm{~d} x$.
80. The product of the roots of the quadratic $x^{2}-16 x+15$.
81. The a When $5 \sqrt{6}-2 \sqrt{24}+\sqrt{294}$ is expressed in the form $a \sqrt{b}$.
82. The gradient of the curve $y=2 x^{4}+2 x^{3}+x$ evaluated at $x=1$.
83. The greatest value of v such that u and v solve the following pair of simultaneous equations:

$$
\begin{aligned}
2 u+2 v & =16 \\
u v & =15
\end{aligned}
$$

84. If the sum of the first n terms of a series is $n^{2}+3 n$, by finding an expression for the nth term (or otherwise) find the first term of the underlying series.
85. What is the value of a when you write $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ in the form $a+b \sqrt{c}$.
86. The value of b when you write $\sqrt{75}+2 \sqrt{48}-5 \sqrt{12}$ in the form $a \sqrt{b}$.
87. The most positive root of the cubic $x^{3}-14 x^{2}+63 x-90$.
88. The sum of the roots of the quadratic $x^{2}-5 x+6$.
89. The gradient of the line passing through the points $(-2,-2)$ and $(-1,2)$.

90 . The common difference of the series $9,14,19,24, \ldots$.
91. The first term of the series with common difference 6 and fourth term 33.
92. The product of the roots of the quadratic $x^{2}-10 x+16$.
93. The y coordinate of the common point of intersection of the line $y=$ $-\frac{1}{2} x+6$ and the parabolas $y=x^{2}+1$ and $y=x^{2}-8 x+17$.
94. The coefficient of the x^{4} term when you differentiate $y=3 x^{5}-\frac{4}{x^{2}}$.
95. The value of the smallest u such that u and v solve the following pair of simultaneous equations:

$$
\begin{aligned}
2 u+2 v & =16 \\
u v & =15
\end{aligned}
$$

Figure 1: Picture for Question 61
96. The b in the completed square form $\left(a(x+b)^{2}+c\right)$ of the quadratic $x^{2}+$ $10 x+23$.
97. The power of z when you simplify $3 x^{2} y z \times 2 y z^{3} \times x^{2} z^{-1}$.
98. $\frac{1}{2} \sqrt{256}$
99. The third term of the arithmetic series with second term 9 and the sum of the first 10 terms is 335 .
100. The x coordinate of the point of intersection of the lines $l_{1}: 7 x+2 y=25$ and $l_{2}: 9 x-7 y=13$.

