AQA Level 2 Further Mathematics Warmup - Paper 12019

Differentiate $y=x(x+1)(x-3)$	Write the matrix representing a rotation through 270°, anticlockwise, about the origin.	State the factor theorem.	Find the second derivative of $y=3 x^{4}+2 x^{2}-10 x^{2}-7 x+5$	Write down the 5 term of the sequence defined by $u_{n}=\frac{3 n+2}{}$ What is the limiting value of
u_{n} as $n \rightarrow \infty ?$				

AQA Level 2 Further Mathematics Warmup - Paper 12019

$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 x-3$	$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$	If $(x-a)$ is a factor of the polynomial $p(x)$, then $p(a)=0$ and $x=a$ is a root of the equation $p(x)=0$. Conversely if $p(a)=0$, then $(x-a)$ is a factor of $p(x)$.	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4\left(9 x^{2}-4\right)$	When $n=5, u_{n}=\frac{17}{10}$. As $n \rightarrow \infty, u_{n} \rightarrow \frac{3}{2}$.
By completing the square the centre is $(2,-3)$ and the radius is 3 .		Use the identity $\begin{aligned} & \sin ^{2}(x)+\cos ^{2}(x)=1 \text { to } \\ & \text { find } \\ & (2 \sin (x)-1)(\sin (x)+2)=0 \\ & \text {. Hence } x=30^{\circ} \text { or } 150^{\circ} \end{aligned}$	$6 b^{2} c$	
$\begin{array}{rl} x & x=\frac{20}{\tan \left(13^{\circ}\right)} \\ x & =86.6 \mathrm{~m} \end{array}$	$g(x)=\left\{\begin{array}{cc} 2 & -2 \leq x \leq 1 \\ x+1 & 1 \leq x \leq 4 \\ 5 & 4 \leq x \leq 6 \end{array}\right.$ Range of $g(x)$ is $2 \leq g(x) \leq 5$	Circle has centre (3,2) and radius $\sqrt{13}$. Equation of tangent at (5,5) is $2 x+3 y=25$. The tangent meets the x-axis at (12.5,0).		Expanding and simplifying $\begin{aligned} & \text { We have } \\ & \begin{aligned} (n+5)^{2}-(n+3)^{2} & =n^{2}+10 n+25-n^{2}-6 n-9 \\ & =4 n+16 \\ & =4(n+4) \end{aligned} \end{aligned}$ which is divisible by 4 .
$\begin{aligned} & f(-1)=0 \text { and so } \\ & (x-1) \text { is a factor. } \end{aligned}$	$\frac{-6 \sqrt{3}-4 \sqrt{5}}{11}$	This leads to two simultaneous equations $2 a+2=4$ and $b a+8=8$ which lead to $a=2$ and. $b=0$.	Completing the square we have $y=2\left(x+\frac{5}{4}\right)-\frac{81}{8}$ so the turning point has coordinate $\left(-\frac{5}{4},-\frac{81}{8}\right)$	Maximum at $\left(-2, \frac{37}{3}\right)$ and minimum at $\left(3,-\frac{17}{2}\right)$
$t^{3}\left(t^{2}-7\right)\left(t^{2}+7\right)$	$y=6 x-4$	$(2,-6)$ and $(6,2)$	$B=\binom{6}{9}$	Factorising the x and y terms separately we have $(x-2)^{2}-3(y+2)^{2}$. Noticing this is a difference of two squares we obtain $(x-3 y-8)(x+3 y+4) \text { as }$ the factorised form.

