Matrix Transformations - Revision

We can use matrices to transform one coordinate to another by matrix multiplication.
For example the matrix $T=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has the following effect on the coordinate (x, y) :

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

That is, the matrix T takes the coordinate (x, y) and transforms it to the coordinate $(a x+b y, c x+d y)$. Put another way, the matrix T performs the transformation

$$
\begin{aligned}
& x \mapsto a x+b y \\
& y \mapsto c x+d y
\end{aligned}
$$

To see the effect of a transformation on a whole shape we can apply the matrix representing the transformation to each coordinate (expressed as a column vector).

Example:

For the triangle with coordinates $(1,1),(3,1)$ and $(3,3)$ the enlargement by a scale factor of 2 , centre the origin can be represented by the matrix $E=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$. Then,

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 3 \\
1 & 1 & 3
\end{array}\right)=\left(\begin{array}{lll}
2 & 6 & 6 \\
2 & 2 & 6
\end{array}\right)
$$

giving a triangle of twice the size.
This is shown graphically below.

We say that T_{1} is the "object" and T_{2} is the "image" of T_{1} under the transformation E.

Questions:

1) Write down the matrix which is equivalent to the mappings $x \mapsto 2 x+y$ and $y \mapsto x+y$.

Show on the axes below the effect of this transformation on the rectangle worth coordinates $(1,1),(3,1),(3,4)$ and $(1,4)$. Show your matrix multiplication.

2) What is the image of the point $(3,5)$ under the transformation represented by the matrix $\left(\begin{array}{cc}3 & 4 \\ -2 & 1\end{array}\right)$.

Standard Matrix Transformations to Know

Identity transformation	()
Enlargement, scale factor k, centre the origin	()
Reflection in the line $x=0$	()
Reflection in the line $y=0$	()
Reflection in the line $y=x$	()
Reflection in the line $y=-x$	()
Rotation by θ° clockwise, centre the origin.	()
Rotation by θ° anticlockwise, centre the origin.	()

For the rotations you only need to be able to use the angles $90^{\circ}, 180^{\circ}$ and 270°.

To determine a matrix for a given transformation we can examine the effect of the transformation on the unit vectors $\mathbf{e}_{\mathbf{1}}=\binom{1}{0}$ and $\mathbf{e}_{\mathbf{2}}=\binom{0}{1}$.

Example:

The transformation T is a rotation 270° about the origin. To find the matrix representing this transformation we consider what happens to the unit vectors under this transformation.

The diagram on the left below shows $\mathbf{e}_{\mathbf{1}}$ and $T \mathbf{e}_{\mathbf{1}}$ (the vector from applying the transformation to $\mathbf{e}_{\mathbf{1}}$

Hence, T maps $\binom{1}{0}$ to $\binom{0}{-1}$.
Similarly, the diagram on the right above shows \mathbf{e}_{2} and $T \mathbf{e}_{2}$, and so T maps $\binom{0}{1}$ to $\binom{1}{0}$.
To obtain the transformation matrix we simply write the two image vectors side by side. So, the transformation T is represented by the matrix

$$
T=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Note: In questions concerning rotation, unless told otherwise rotations are performed anti-clockwise.

Example:

The matrix $\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$ is an enlargement, scale factor 4, centred the origin.

Note: When describing transformations given by a matrix give as much detail as you would in a GCSE transformations question.

Questions:

1)

a) Describe the transformation $M=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.
b) Describe the transformation $N=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
2) Using the grids below find the matrix representing a reflection in the line $y=-x$

Combining Transformations

Suppose that we have a point L and we first apply one transformation T_{1} to it, and then apply a second transformation T_{2}. This can be represented diagrammatically as below

The combined transformation would map L to $L^{\prime \prime}$ in one go.
To find the matrix transformation for the combined transformation, suppose the matrix A represents T_{1} and the matrix B represents T_{2}, then the matrix representing the combined transformation is given by

$$
B A
$$

Example:

A transformation represented by the matrix $M=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$ is followed by a transformation represented by the matrix $N=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$. Then the combined transformation is represented by

$$
N M=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)=\left(\begin{array}{ll}
6 & 3 \\
9 & 6
\end{array}\right)
$$

Note: This is similar to the composition of functions. Suppose you are applying the transformations to a point L. Then applying M to L is equivalent to writing $M L$, you then apply N which is the same as calculating $N(M L)=N M L$. Hence the matrix representing the combined transformation is $N M$.

Example:

A point $P(1,2)$ is transformed by $\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$, followed by a further transformation by $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$.
The transformed transformation is then represented by

$$
\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)=\left(\begin{array}{cc}
3 & -3 \\
0 & 3
\end{array}\right)
$$

Hence, the image of P after both transformations is given by

$$
\left(\begin{array}{cc}
3 & -3 \\
0 & 3
\end{array}\right)\binom{1}{2}=\binom{-3}{6}
$$

Questions:

1) Find the matrix representing the transformation formed from a reflection in the y - axis followed by a rotation by 90° anticlockwise.
2) Find the matrix representing the transformation formed from an enlargement, centre the origin, scale factor 2 , followed by a rotation by 90° anticlockwise and then finally a reflection in the line $y=x$
