

AQA FM Paper 2 2019 "Predicted Content"

Name:	

Class:

Mark: / 124

2 The vectors
$$\begin{pmatrix} 2\\1\\3 \end{pmatrix}$$
 and $\begin{pmatrix} 3\\a\\1 \end{pmatrix}$ are perpendicular. Find the value of a .
3 -3 9 -9
[1 mark]

3 Let
$$z_1 = 2e^{i\frac{\pi}{3}}$$
 and $z_2 = z_2 = 3e^{i\frac{\pi}{12}}$, if $-\pi < \arg(z) \le \pi$, $\arg(z_1^3 z_2)$ is equal to

$$-\frac{11\pi}{12} \qquad \frac{13\pi}{12} \qquad \frac{11\pi}{12} \qquad \frac{7\pi}{36}$$
[1 mark]

4 Show, with full reasoning, that $\int_{-\infty}^{\infty} x e^{-x^2} dx = 0$.

$$\frac{1}{k+2} - \frac{1}{k+4} = \frac{2}{k^2 + 6k + 8}$$

[2 marks]

b) Hence, find an expression for $n = \frac{1}{2}$

$$\sum_{k=1}^{n} \frac{2}{k^2 + 6k + 8}$$

c) Using your result to part (b), or otherwise, evaluate $\sum_{k=1}^{\infty} \frac{2}{k^2 + 6k + 8}$ [2 marks]

- -

6 The circle $x^2 + y^2 = 1$ undergoes three transformations. It is translated by the vector $\begin{pmatrix} -\frac{2}{5} \\ \frac{3}{4} \end{pmatrix}$ before being stretched horizontally with a scale

factor 5. Finally it is stretched vertically with a scale factor 4.

a) Find an equation for the resulting conic and determine its nature.

b) Sketch the resulting conic.

[2 marks]

7 a) Prove that
$$\operatorname{arsinh}(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$$
.

b) Hence, find in logarithmic form the solutions to $\cosh^2(x) - 2\sinh(x) - 4 = 0$

8 a) Find a reduction formula for
$$\int_0^{\frac{\pi}{2}} \cos^n(x) \, dx$$

b) Hence, evaluate
$$\int_{0}^{\frac{\pi}{2}} \cos^{2}(x)(1 + \cos^{2}(x)) dx$$
.

[4 marks]

9 Consider the function $y = \frac{x^2 + 2}{x}$.

a) Find the equations of the asymptotes to this curve.

[3 marks]

b) Find, using quadratic theory, the stationary points of the curve $y = \frac{x^2 + 2}{x}$. Solutions employing the calculus will not be awarded marks.

c) Hence, sketch the curve
$$y = \frac{x^2 + 2}{x}$$
.

[3 marks]

10 a) Solve, analytically, the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y$$

where y(1) = 4.

b) Use Euler's method with a step size of 0.1 to find an approximate value for y(1.3).

[3 marks]

c) Consider the Improved Euler Method shown below

$$y_{r+1} = y_{r-1} + 2hf(x_r, y_r), \qquad x_{r+1} = x_r + h$$

Using the boundary value y(1) = 4 and the value calculated in part (b) for y(1.1) find an approximate value for y(1.3) using this Improved Euler Method.

[3 marks]

d) With reference to the exact solution found in part (a) comment on the accuracy of the Euler Method and the Improved Euler Method.

[2 marks]

11 Find

$$\int \frac{4x}{(x+1)(x^2+4)} \,\mathrm{d}x$$

[8 marks]

12 Evaluate $\lim_{x \to 0} \frac{\arcsin(2x)}{\arctan(7x)}$

13 On an Argand diagram shade the region given by

$$\left\{z: |z-1+i| < 3\right\} \cap \left\{\frac{\pi}{6} \le \arg\left(z-1+2i\right) \le \frac{\pi}{3}\right\}$$

14 Prove, by induction, that $3^{2n} + 7$ is divisible by 8.

[7 marks]

15 Sketch
$$f(x) = |(x+1)(x-2)(x+3)|$$

[6 marks]

16 a) Find the invariant lines under the transformation

$$T = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$$

[6 marks]

b) Describe the transformation T geometrically.

[2 marks]

17 a) Compute the arc length of $y = \ln(\sec(x))$ between x = 0 and $x = \frac{\pi}{3}$.

b) The curve described in part (a), when rotated around the x-axis forms the curved boundary of titanium paperweight that has been machined on a CNC lathe. Showing full working, approximately determine the volume of the paperweight by employing the mid-ordinate rule where the number of strips, n, is 3.

- **18** Consider the matrix $A = \begin{pmatrix} 1 & 3 \\ -1 & 5 \end{pmatrix}$
 - **a)** Find the eigenvalues of *A*.

[3 marks]

b) Find the corresponding eigenvectors.

c) Find the inverse matrix A^{-1} and verify that $\lambda_1 = \frac{1}{2}$ is an eigenvalue of A^{-1} with corresponding eigenvector $\mathbf{v_1} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

[3 marks]

d) Explain why 16 must be an eigenvector of A^4 .

[2 marks]