

AQA FM Paper 22019 "Predicted Content"

Name:
Class:
Mark: / 124

1 Calculate $\sum_{r=5}^{10} r(r+1)$
400
420
440
532
[1 mark]

2 The vectors $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}3 \\ a \\ 1\end{array}\right)$ are perpendicular. Find the value of a.

$$
\begin{array}{llll}
3 & -3 & 9 & -9 \\
& & {[1 \text { mark] }}
\end{array}
$$

3 Let $z_{1}=2 \mathrm{e}^{i \frac{\pi}{3}}$ and $z_{2}=z_{2}=3 \mathrm{e}^{i \frac{\pi}{12}}$. , if $-\pi<\arg (z) \leq \pi, \arg \left(z_{1}^{3} z_{2}\right)$ is equal to
$-\frac{11 \pi}{12} \quad \frac{13 \pi}{12} \quad \frac{11 \pi}{12} \quad \frac{7 \pi}{36}$
[1 mark]

4 Show, with full reasoning, that $\int_{-\infty}^{\infty} x \mathrm{e}^{-x^{2}} \mathrm{~d} x=0$.

5 a) Show that

$$
\frac{1}{k+2}-\frac{1}{k+4}=\frac{2}{k^{2}+6 k+8}
$$

b) Hence, find an expression for

$$
\sum_{k=1}^{n} \frac{2}{k^{2}+6 k+8}
$$

c) Using your result to part (b), or otherwise, evaluate

$$
\sum_{k=1}^{\infty} \frac{2}{k^{2}+6 k+8}
$$

[2 marks]

6 The circle $x^{2}+y^{2}=1$ undergoes three transformations. It is translated by the vector $\binom{-\frac{2}{5}}{\frac{3}{4}}$ before being stretched horizontally with a scale factor 5 . Finally it is stretched vertically with a scale factor 4.
a) Find an equation for the resulting conic and determine its nature.
b) Sketch the resulting conic.
[2 marks]

7 a) Prove that $\operatorname{arsinh}(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$.
b) Hence, find in logarithmic form the solutions to

$$
\cosh ^{2}(x)-2 \sinh (x)-4=0
$$

8 a) Find a reduction formula for $\int_{0}^{\frac{\pi}{2}} \cos ^{n}(x) \mathrm{d} x$
[4 marks]
b) Hence, evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{2}(x)\left(1+\cos ^{2}(x)\right) \mathrm{d} x$.
[4 marks]

9 Consider the function $y=\frac{x^{2}+2}{x}$.
a) Find the equations of the asymptotes to this curve.
b) Find, using quadratic theory, the stationary points of the curve $y=\frac{x^{2}+2}{x}$. Solutions employing the calculus will not be awarded marks.
c) Hence, sketch the curve $y=\frac{x^{2}+2}{x}$.

10 a) Solve, analytically, the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y
$$

where $y(1)=4$.
b) Use Euler's method with a step size of 0.1 to find an approximate value for $y(1.3)$.
[3 marks]
c) Consider the Improved Euler Method shown below

$$
y_{r+1}=y_{r-1}+2 h f\left(x_{r}, y_{r}\right), \quad x_{r+1}=x_{r}+h
$$

Using the boundary value $y(1)=4$ and the value calculated in part (b) for $y(1.1)$ find an approximate value for $y(1.3)$ using this Improved Euler Method.
[3 marks]
d) With reference to the exact solution found in part (a) comment on the accuracy of the Euler Method and the Improved Euler Method.
[2 marks]

11 Find

$$
\int \frac{4 x}{(x+1)\left(x^{2}+4\right)} d x
$$

[8 marks]

12 Evaluate $\lim _{x \rightarrow 0} \frac{\arcsin (2 x)}{\arctan (7 x)}$.
[5 marks]

13 On an Argand diagram shade the region given by

$$
\{z:|z-1+\mathrm{i}|<3\} \cap\left\{\frac{\pi}{6} \leq \arg (z-1+2 \mathrm{i}) \leq \frac{\pi}{3}\right\}
$$

[5 marks]

14 Prove, by induction, that $3^{2 n}+7$ is divisible by 8 .

15 Sketch $f(x)=|(x+1)(x-2)(x+3)|$
[6 marks]

16 a) Find the invariant lines under the transformation

$$
T=\left(\begin{array}{cc}
-\frac{3}{5} & \frac{4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right)
$$

b) Describe the transformation T geometrically.
[2 marks]

17 a) Compute the arc length of $y=\ln (\sec (x))$ between $x=0$ and $x=\frac{\pi}{3}$.
[5 marks]
b) The curve described in part (a), when rotated around the x-axis forms the curved boundary of titanium paperweight that has been machined on a CNC lathe. Showing full working, approximately determine the volume of the paperweight by employing the mid-ordinate rule where the number of strips, n, is 3.

18 Consider the matrix $A=\left(\begin{array}{cc}1 & 3 \\ -1 & 5\end{array}\right)$
a) Find the eigenvalues of A.
[3 marks]
b) Find the corresponding eigenvectors.
[4 marks]
c) Find the inverse matrix A^{-1} and verify that $\lambda_{1}=\frac{1}{2}$ is an eigenvalue of A^{-1} with corresponding eigenvector $\mathbf{v}_{\mathbf{1}}=\binom{3}{1}$.
[3 marks]
d) Explain why 16 must be an eigenvector of A^{4}.
[2 marks]

