Anscombe's Quartet Anscombe's Quartet are 4 datasets that were constructed in 1973 by the statistician Francis Anscombe. We are going to spend a bit of time exploring them. | Set1 | | Set 2 | | Set 3 | | Set 4 | | |------|-------|-------|------|-------|-------|-------|-------| | X | Υ | X | Υ | X | Υ | X | Υ | | 10.0 | 8.04 | 10.0 | 9.14 | 10.0 | 7.46 | 8.0 | 6.58 | | 8.0 | 6.95 | 8.0 | 8.14 | 8.0 | 6.77 | 8.0 | 5.76 | | 13.0 | 7.58 | 13.0 | 8.74 | 13.0 | 12.74 | 8.0 | 7.71 | | 9.0 | 8.81 | 9.0 | 8.77 | 9.0 | 7.11 | 8.0 | 8.84 | | 11.0 | 8.33 | 11.0 | 9.26 | 11.0 | 7.81 | 8.0 | 8.47 | | 14.0 | 9.96 | 14.0 | 8.10 | 14.0 | 8.84 | 8.0 | 7.04 | | 6.0 | 7.2 | 6.0 | 6.13 | 6.0 | 6.08 | 8.0 | 5.25 | | 4.0 | 4.26 | 4.0 | 3.10 | 4.0 | 5.39 | 19.0 | 12.50 | | 12.0 | 10.84 | 12.0 | 9.13 | 12.0 | 8.15 | 8.0 | 5.56 | | 7.0 | 4.82 | 7.0 | 7.26 | 7.0 | 6.42 | 8.0 | 7.91 | | 5.0 | 5.68 | 5.0 | 4.74 | 5.0 | 5.73 | 8.0 | 6.89 | For each data set compute the following summary statistics: - The mean of X - The Mean of Y - The variance of X - The Variance of Y - The correlation coefficient between X and Y - The equation of the linear regression line between X and Y What do you notice with these summary statistics? What does this lead you to believe about the underlying distributions of the data? Now plot each data set on a graph of the x/y coordinate plane – what do you see? Is this what you were expecting?