Parametric Functions

The equation of the tangent at $\frac{\pi}{4}$ is $y=-x+2+\sqrt{2}$.

At the points A, B on the curve $t=1$ and $t=2$. The area between the curve, the x-axis and the lines through A and B parallel to the y-axis is $\ln (2)-\ln (1)$.

$$
(x-1)^{2}+(y-1)^{2}=1
$$

$x=\tan (t), \quad y=\sin (t), \quad 0 \leq t<\pi$

At the points A, B on the curve $t=\frac{\pi}{6}$ and $t=\frac{\pi}{3}$. The area between the curve, the x-axis and the lines through A and B parallel to the y-axis is $2-\frac{2}{\sqrt{3}}$
$x=3 t, \quad y=\frac{1}{3 t}, \quad \frac{1}{2}<t<10$
$x=4 \sin (t), \quad y=3 \cos (t), \quad 0 \leq t<2 \pi$

The tangent to the curve, when $t=1$
meets the y-axis at $y=\frac{2}{3}$

The equation of the tangent to the curve at
$t=\frac{\pi}{4}$ is $y=\frac{\sqrt{2}}{4} x+\frac{\sqrt{2}}{4}$
At the points A, B on the curve $t=\frac{\pi}{6}$ and $t=\frac{\pi}{3}$. The area between the curve, the x-axis and the lines through A and B parallel to the y-axis is π

$$
x=1+t, \quad y=1-t, \quad-10 \leq t \leq 10
$$

The equation of the normal when $t=0$ is $y=x$.

$$
y=\sin (\arctan (x))
$$

$y=\frac{1}{x}$	At the points A, B on the curve $t=\frac{\pi}{6}$ and $t=\frac{\pi}{3}$. The area between the curve, the x-axis and the lines through A and B parallel to the y-axis is $\frac{1}{12}(6-6 \sqrt{3}-\pi)$
$x=1+\cos (t), \quad y=1+\sin (t), \quad 0 \leq t<2 \pi$	$y=-x+2$
At the points A, B on the curve $t=1$ and $t=2$. The area between the curve, the x-axis and the lines through A and B parallel to the y-axis is $\frac{1}{2}$	The normal to the curve $t=\frac{\pi}{4}$ crosses the axis at the point $\left(\frac{7 \sqrt{2}}{8}, 0\right)$.

