Parametric Functions

The equation of the tangent at $\frac{\pi}{4}$ is $y = -x + 2 + \sqrt{2}$.	At the points <i>A</i> , <i>B</i> on the curve $t = 1$ and $t = 2$. The area between the curve, the <i>x</i> -axis and the lines through <i>A</i> and <i>B</i> parallel to the <i>y</i> -axis is $\ln(2) - \ln(1)$.
$(x-1)^2 + (y-1)^2 = 1$	$x = \tan(t), y = \sin(t), 0 \le t < \pi$
At the points <i>A</i> , <i>B</i> on the curve $t = \frac{\pi}{6}$ and $t = \frac{\pi}{3}$. The area between the curve, the <i>x</i> -axis and the lines through <i>A</i> and <i>B</i> parallel to the <i>y</i> -axis is $2 - \frac{2}{\sqrt{3}}$	$x = 4\sin(t), y = 3\cos(t), 0 \le t < 2\pi$
$x = 3t$, $y = \frac{1}{3t}$, $\frac{1}{2} < t < 10$	The tangent to the curve, when $t = 1$ meets the <i>y</i> -axis at $y = \frac{2}{3}$
The equation of the tangent to the curve at $t = \frac{\pi}{4}$ is $y = \frac{\sqrt{2}}{4}x + \frac{\sqrt{2}}{4}$	$\frac{x^2}{16} + \frac{y^2}{9} = 1$
At the points <i>A</i> , <i>B</i> on the curve $t = \frac{\pi}{6}$ and $t = \frac{\pi}{3}$. The area between the curve, the <i>x</i> -axis and the lines through <i>A</i> and <i>B</i> parallel to the <i>y</i> -axis is π	$x = 1 + t$, $y = 1 - t$, $-10 \le t \le 10$
The equation of the normal when $t = 0$ is $y = x$.	$y = \sin(\arctan(x))$
$y = \frac{1}{x}$	At the points <i>A</i> , <i>B</i> on the curve $t = \frac{\pi}{6}$ and $t = \frac{\pi}{3}$. The area between the curve, the <i>x</i> -axis and the lines through <i>A</i> and <i>B</i> parallel to the <i>y</i> -axis is $\frac{1}{12}\left(6-6\sqrt{3}-\pi\right)$
$x = 1 + \cos(t), y = 1 + \sin(t), 0 \le t < 2\pi$	y = -x + 2
At the points <i>A</i> , <i>B</i> on the curve $t = 1$ and $t = 2$. The area between the curve, the <i>x</i> -axis and the lines through <i>A</i> and <i>B</i> parallel to the <i>y</i> -axis is $\frac{1}{2}$	The normal to the curve $t = \frac{\pi}{4}$ crosses the axis at the point $\left(\frac{7\sqrt{2}}{8}, 0\right)$.