FP2 'Keeping Time’

1)

a) Express $\frac{3}{(3 r-1)(3 r+2)}$ in partial fractions.
b) Hence, show that

$$
\sum_{r=1}^{n} \frac{3}{(3 r-1)(3 r+2)}=\frac{3 n}{2(3 n+2)}
$$

c) Evaluate $\sum_{r=100}^{1000} \frac{3}{(3 r-1)(3 r+2)}$ giving your answer to 3 significant figures.
2) Find the area enclosed by the cardioid with polar equation $r=2 a(1+\cos \theta)$
3) Find the general solution of the differential equation

$$
\frac{d y}{d x}+\left(\frac{1}{x}\right) y=x^{2}
$$

4) Find the values of x for which

$$
\frac{2 x}{x-1}>x
$$

5) Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+5 y=3 \cos (5 x)
$$

6) Find the series expansion for $y=\sqrt{8+e^{x}}$ in ascending powers of x, up to and including the term in x^{2}.
7) A transformation T from the z-plane to the w-plane is given by

$$
w=\frac{z+2 i}{i z}, \quad z \neq 0
$$

The transformation maps points on the real axis in the z-plane onto a line in the w plane. Find the equation of this line.
8) Solve the equation $z^{4}=-2+(2 \sqrt{3}) i$ giving the roots in the form $r(\cos \theta+$ $i \sin \theta$), where $-\pi<\theta \leq \pi$.
9) Consider the differential equation

$$
\frac{d^{2} y}{d x^{2}}=x y+\frac{d y}{d x}
$$

Given that $\frac{d y}{d x}=2$ and $y=1$ at $x=1$, find the values of $\frac{d^{2} y}{d x^{2}}$ and $\frac{d^{3} y}{d x^{3}}$ at $x=1$. Hence find the solution of the differential equation as a series in ascending powers of $(x-1)$, up to and including the term in $(x-1)^{3}$.
10) Express $\cos 5 \theta$ in terms of $\cos \theta$.
11) Sketch the locus of z such that $|z-3|=2|z-1+i|$
12) Show that the transformation $z=y^{\frac{1}{2}}$ transforms the differential equation

$$
\frac{d y}{d x}-4 y \tan x=2 y^{\frac{1}{2}}
$$

Into the differential equation

$$
\frac{d z}{d x}-2 z \tan x=1
$$

Hence solve the original differential equation.

