FP2 June 2012 - Harder Version

1) Find the set of values for which $\left|x^{2}-4\right|>3 x$
2) A curve C has polar equation $r=1+2 \cos \theta, 0 \leq \theta \leq \frac{\pi}{2}$. At the point P on C, the tangent to C is parallel to the initial line. Given that O is the pole, find the exact length of the line $O P$.
3) Solve the equation $z^{4}=-2+(2 \sqrt{3}) i$ giving your answers in modulus-argument form.
4) Find the general solution of the differential equation

$$
\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=2 \cos t-\sin t
$$

5) Given that $y=1$ at $x=1$ find a series solution for y in ascending powers of $(x-1)$ up to and including the term in $(x-1)^{3}$ where y is the solution of the differential equation below.

$$
x \frac{d y}{d x}=3 x+y^{2}
$$

6) Show, using the method of differences that

$$
\sum_{r=1}^{n} \frac{1}{r(r+2)}=\frac{n(a n+b)}{4(n+1)(n+2)}
$$

where a and b are constants to be found. Hence find an expression for $\sum_{r=n+1}^{2 n} \frac{1}{r(r+2)}$
7) Using the substitution $y=v x$ find the general solution of the differential equation below in the form $y=f(x)$. Given that $y=2$ at $x=1$ find also the value of $\frac{d y}{d x}$ at $x=1$.

$$
3 x y^{2} \frac{d y}{d x}=x^{3}+y^{3}
$$

8) Find the locus of the complex number z such that $|z-6 i|=2|z-3|$. Find also the complex number for which both $|z-6 i|=2|z-3|$ and $\arg (z-6)=-\frac{3 \pi}{4}$ illustrating your answer on a diagram.
