FP1 'Keeping Time’

1) Consider the equation $f(x)=3^{x}+3 x-7$.
a) Show that the equation $f(x)=0$ has a root α between $x=1$ and $x=2$.
b) Starting with the interval [1,2], use interval bisection twice to find an interval of width 0.25 which contains α.
2) Given that $z=2+4 i$,
a) Find z^{2}
b) Find $\left|z^{2}\right|$ and $\arg \left(z^{2}\right)$
c) Find $z z^{*}$
d) Plot z, z^{2} and $z z^{*}$ on an Argand diagram.
3) Let $A=\left(\begin{array}{ll}1 & 2 \\ 5 & k\end{array}\right)$
a) Find $\operatorname{det}(A)$ and A^{-1} in terms of k.
b) For what value of k does there not exist an inverse.
c) Evaluate the determinant when $k=3$.
4) The parabola C has equation $y^{2}=20 x$.
a) Verify that the point $P\left(5 t^{2}, 10 t\right)$ is a general point on C.
b) The point A on C has parameter $t=4$. The line l passes through A and also passes through the focus of C. Find the gradient of l.
5) Find in the form $p \pm i \sqrt{q}$ the solutions to the quadratic equation $z^{2}-10 z+28=0$ and plot these on an Argand diagram.
6) Let $f(x)=x^{2}+\frac{5}{2 x}-3 x-1, x \neq 0$.

Taking 0.8 as a first approximation to the root α of the equation $f(x)=0$ apply the Newton-Raphson process once to obtain a second approximation to α.
7)
a) Write down a 2×2 matrix that represents an enlargement with centre $(0,0)$ and scale factor 8.
b) Write down a 2×2 matrix that represents a reflection in the x-axis.
c) Find the matrix T that represents represents an enlargement with centre $(0,0)$ and scale factor 8 , followed by a reflection in the x-axis.
8) Find
a) $\sum_{r=1}^{n}\left(6 r^{2}+2^{r}\right)$
b) $\sum_{r=4}^{10}\left(6 r^{2}+2^{r}\right)$
9) Solve using a matrix method the following simultaneous equations

$$
\begin{aligned}
& 4 x-y=11 \\
& 3 x+2 y=0
\end{aligned}
$$

10) The rectangular hyperbola H has Cartesian equation $x y=4$. The point $P\left(2 t, \frac{2}{t}\right)$ lies on H, where $t \neq 0$.

Show that an equation of the normal to H at the point P is

$$
t y-t^{3} x=2-2 t^{4}
$$

11) Prove, by induction that, for $n \geq 1$

$$
\sum_{r=1}^{n} \frac{1}{r(r+1)}=\frac{n}{n+1}
$$

12) The quartic equation $z^{4}-5 z^{3}+15 z^{2}-5 z-26=0$ has $z=2+3 i$ as one of its roots. Find the other roots.
