Question 1 Find $\sum_{r=1}^{n}(2 r+1)\left(r^{2}+3 r\right)$ in the form $\frac{1}{6} n(n+1)\left(a n^{2}+b n+c\right)$. Pass on the value of a to Question 2.	Question 3 Let $f(x)=x^{3}+3 x^{2}-b x+4$ where b is the value from Question 2. Use the Newton-Raphson process twice with initial guess $x_{0}=0$ to obtain an approximate value for one of the roots. Let c be the digit with place value hundredths. Pass this on to Question 4.
Question 5 Prove that $8^{n}-1$ is divisible by d, where d is the value from Question 4. Pass on $e=d^{2}$ to Question 6.	Question 7 Let A be a matrix such that its determinant is the value f from Question 6. Given that $A=\left(\begin{array}{ll}2 & 1 \\ g & 8\end{array}\right)$ find g and pass this on to Question 8.
Question 9 Where x and y are from Question 8, find $\sum_{r=x}^{y} r^{2}+2^{r}$ Let your answer be k and pass this value on to Question 10.	Question 11 Three vertices of a square are $(0,0),(2,0)$ and $(0,2)$. An enlargement by scale factor l (where l is the value from question 10) is represented by the matrix S and a rotation of 180° about $(0,0)$ is represented by the matrix T. Find the absolute value of the y-coordinate of the transformed point when you apply S followed by T to the vertex of the square that is opposite the origin. Pass this on to Question 12.

Question 2

Using a from Question 1. Let $z=a+2 i$.
Calculate $z^{2} z^{*}$.
Let b be the real part of $z^{2} z^{*}$ divided by 3.
Pass on b to Question 3

Question 6

Let e be the number from Question 5 . Simplify

$$
\frac{9+e i}{4+3 i}
$$

Let f be the square root of the numerator of the imaginary part of your answer. Pass this on to Question 7.

Question 10

Show that $(x-1)$ is a factor of $x^{3}-5 x^{2}+193 x-k$.
Find the other roots of $x^{3}-5 x^{2}+$ $193 x-k=0$.
Let l be the real part of the other two roots and pass this on to Question 11.

Question 4

A parabola has parametric equations $x=c t^{2}, y=2 c t$ where c is the value from Question 3.
Find the focus, S, and directrix of this parabola.
A point P on this parabola has x coordinate 4.
Find the distance $d=P S$ and pass this on to Question 5.

Question 8

With g being the value obtained from Question 7, solve, using a matrix method, the simultaneous equations

$$
\begin{aligned}
& g x+2 y=24 \\
& 5 x+g y=38
\end{aligned}
$$

Pass your solutions on to Question 9.

Question 12

A rectangular hyperbola has equation $x y=m$ where m is the number from Question 11.
Find an equation for the tangent at the point $P\left(m t, \frac{m}{t}\right)$.
What is the area of the triangle formed by the
x-axis, y-axis and this tangent?

