Initial question (Edexcel FP1, Jan 2009):

8. A parabola has equation $y^{2}=4 a x, a>0$. The point $Q\left(a q^{2}, 2 a q\right)$ lies on the parabola.
(a) Show that an equation of the tangent to the parabola at Q is

$$
\begin{equation*}
y q=x+a q^{2} . \tag{4}
\end{equation*}
$$

This tangent meets the y-axis at the point R.
(b) Find an equation of the line l which passes through R and is perpendicular to the tangent at Q.
(3)
(c) Show that l passes through the focus of the parabola.
(d) Find the coordinates of the point where l meets the directrix of the parabola.

This becomes:

A parabola has equation $y^{2}=4 a x, a>0$. The tangent to the point Q , which lies on the parabola, meets the y-axis at the point R. Show that the line l which passes through R and is perpendicular to the tangent at Q passes through the focus of the parabola. Find also, the coordinates where l meets the directrix of the parabola.

Initial Question (Edexcel FP1 June 2011):

5.

$$
\mathbf{A}=\left(\begin{array}{rr}
-4 & a \\
b & -2
\end{array}\right) \text {, where } a \text { and } b \text { are constants. }
$$

Given that the matrix A maps the point with coordinates $(4,6)$ onto the point with coordinates $(2,-8)$,
(a) find the value of a and the value of b.

A quadrilateral R has area 30 square units.
It is transformed into another quadrilateral S by the matrix \mathbf{A}.
Using your values of a and b,
(b) find the area of quadrilateral S.

This becomes:

The matrix $A=\left(\begin{array}{cc}-4 & a \\ b & -2\end{array}\right)$ (a and b are constants) maps the point with coordinates $(4,6)$ onto the point with coordinates $(2,-8)$. A quadrilateral R is transformed into another quadrilateral S by the matrix A. Given that the area of R is 30 square units, what is the area of S ?

Initial Question (Edexcel FP1, June 2011):

7. (a) Use the results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that

$$
\sum_{r=1}^{n}(2 r-1)^{2}=\frac{1}{3} n(2 n+1)(2 n-1)
$$

for all positive integers n.
(b) Hence show that

$$
\sum_{r=n+1}^{3 n}(2 r-1)^{2}=\frac{2}{3} n\left(a n^{2}+b\right)
$$

where a and b are integers to be found.

This becomes:

Using standard results show that

$$
\sum_{r=n+1}^{3 n}(2 r-1)^{2}=\frac{2}{3} n\left(a n^{2}+b\right)
$$

Where a and b are integers to be found.
Initial Question (Edexcel FP1, January 2011)
4. Given that $2-4 \mathrm{i}$ is a root of the equation

$$
z^{2}+p z+q=0
$$

where p and q are real constants,
(a) write down the other root of the equation,
(b) find the value of p and the value of q.

This becomes:

Find the value of p and q such that $2-4 i$ is a root of $z^{2}+p z+q=0$.

