A-Level Christmas Calculated Colouring 2022

Number	2	10	5	3	36
Colour	Brown	Light Blue	Dark Blue	Yellow	Orange
Number	4	7	8	11	12

A-Level Christmas Calculated Colouring 2022							
Number	2	10	5	3	36		
Colour	Brown	Light Blue	Dark Blue	Yellow	Orange		
Number	4	7	8	11	12		
Colour	Red	Purple	Green	Grey	Black		

A-Level Christmas Calculated Colouring 2022

- **1** The only positive root of the polynomial $p(x) = x^3 + 2x^2 5x 6$.
- **2** The *x*-coordinate of the solution to the simultaneous equations 2x + 4y = 22 and 5x + 3y = 27
- **3** The *x*-coordinate of the centre of the circle $x^2 4x + y^2 6y 12 = 0$
- **4** Find *a* such that the coefficient of x^3 in the expansion of $(x + a)^4$ is 8.
- 5 The *y*-intercept of the quadratic $y = (x + 1)^2 + 2$.
- 6 One third of the discriminant of the quadratic function $2x^2 + 5x + 2$.
- 7 The absolute value of the gradient of the line passing through (-8,6) and (-5, -3).
- 8 The denominator when you rationalise $\frac{3}{\sqrt{10} \sqrt{12}}$.
- 9 One half of the fourth square number.
- **10** The radius of the circle $x^2 4x + y^2 6y 12 = 0$. $x^2 + 5x - 14$ x + a
- 11 $\frac{x^2 + 5x 14}{x^2 + 2x 8}$ can be written in the form $\frac{x + a}{x + b}$. Find the value of a.
- **12** Find $\sqrt{8}$ in the form $a\sqrt{2}$. The answer is *a*.
- **13** The *x*-coordinate of the turning point of the quadratic $y = x^2 4x 6$.
- **14** The number of intersections between the line y = 2x + 1 and $y = 2x^2 + 2x 5$.
- **15** The positive *x*-coordinate of the intersection of the circle $(x-2)^2 + (y-3)^2 = 25$ and the line -4x + 3y = 1.
- **16** The denominator when you rationalise $\frac{3}{\sqrt{5}}$.
- **17** The repeated root of the polynomial $p(x) = x^3 3x^2 + 4$.
- **18** The power of 3 in the prime factorisation of 43740.
- **19** The number of solutions to $tan(4x) = \frac{1}{2}$ in the interval $0^{\circ} \le x \le 360^{\circ}$.

- The radius of the circle $x^2 2x + y^2 + 6y 134 = 0$. 20
- Find b such that $\sqrt{252} = a\sqrt{b}$. 21
- The x-coordinate of the turning point of the quadratic 22 $v = x^2 - 14x + 61.$
- The *y*-intercept of the line parallel to y = 2x 4 passing through 23 (-2,3).
- The absolute value of the y-coordinate of the intersection of the lines 24 4x - 5y = 7 and -2x + y = 7.
- A triangle has side lengths $\frac{4}{\sqrt{3}}$ and 8 with the angle subtended between 25

them being 60° . Find the area.

- Find *a* such that (x + a) is the only linear factor of the polynomial 26 $p(x) = x^3 + 11x^2 + 25x + 8$
- $46656^{\frac{1}{3}}$ 27
- The area of the triangle with vertices the origin and the intersections of the 28 line $y = -\frac{x}{2} + 6$ and the axes.
- The sum of the roots of $p(x) = x^3 12x^2 + 47x 60$. 29
- The y-coordinate of the solution to the simultaneous equations 30 2x + 4y = 22 and 5x + 3y = 27.
- 31
- The number of solutions to $sin(x) = \frac{1}{2}$ in the interval $0^{\circ} \le x \le 540^{\circ}$. Find *a* such that when you rationalise the denominator of $\frac{3}{a + \sqrt{5}}$ you 32

obtain $3\sqrt{5} - 6$.

- Given that (x 2) and (x + 1) are factors of 33 $p(x) = x^4 + 3x^3 + ax^2 - 3x + b$, find the absolute value of a.
- The length of the line segment between (-1,6) and (3,3). 34
- The *x*-coordinate of the intersection point of the lines y = x 3 and 35 y = -3x + 5.
- Find c such that $(x + 1)(x 6)^2 = x^3 11x^2 + 24x + c$ 36
- The gradient of $y = x^2 + x + 5$ when evaluated at *a* has value 7. Find *a*. 37
- The square of the radius of the circle where A(-2,3) and B(-2,-9) are 38

endpoints of a diameter.

- **39** Find *b* such that $(2x + 1)(x b)^2 = 2x^3 11x^2 + 12x + 9$.
- **40** The coefficient of x^2 in the expansion of $(2 + x)^n$ is 24. Find *n*.
- **41** Find *a* such that $\sqrt{63} = a\sqrt{b}$.
- **42** Double the he coefficient of x^5 in the expansion of $(x + 3)^6$
- **43** The radius of the circle $(x + 1)^2 + y^2 = 9$.

44 The value of
$$\binom{7}{2} + 3\binom{5}{1}$$
, where $\binom{a}{b}$ means "*a* choose *b*"

- **45** The power of x when you simplify $\frac{x^3y^2z}{2x} \times \frac{x^3y}{3x^3z^2}$
- **46** The coefficient of x^2 term appearing in the derivative of $y = x^4 + 12x^3 + 3x^2$
- **47** The gradient of the line perpendicular to $y = -\frac{1}{3}x + 2$.
- **48** The *y*-intercept of the line passing through (-4,2) and (-1,8).
- **49** The absolute value of the *y*-coordinate of the turning point of the quadratic $y = x^2 4x 6$.
- **50** The discriminant of the quadratic $y = x^2 + 6x + 7$.
- **51** 14641^{$\frac{1}{4}$}.
- 52 The *x*-coordinate of the intersection point the quadratic $y = x^2 2x 5$ and the line y = 4x - 14
- **53** The *x*-intercept of the line y = 4x 8.
- **54** The gradient of the line passing through (1,0) and (3,10).
- **55** Given that (x 2) and (x + 1) are factors of $p(x) = x^4 + 3x^3 + ax^2 3x + b$, find *b*.
- **56** A right angled triangle has two sides which are of length 3 and 5. Given that all sides are integer length what is the length of the other side.
- **57** One ninth of the y-intercept of the tangent to

$$y = x^3 - 14x^2 - 16x + 96$$
 when $x = 1$

- **58** $a^2 = 12 \times 108$. Find *a*.
- **59** $\frac{x^2 + 5x 14}{x^2 + 2x 8}$ can be written in the form $\frac{x + a}{x + b}$. Find the value of *b*.
- 60 Absolute value of the repeated solution of $x^2 + 8x + 16 = 0$.
- **61** The x-coordinate of the point where the circles with equations

 $x^{2} + y^{2} = 16$ and $x^{2} - 18x + y^{2} + 56 = 0$ touch.

- 62 The number of factors of a prime number.
- **63** The real valued solution to $2^x = 4^5$.
- 64 The remainder on dividing $x^3 + 4x^2 + 5x + 12$ by (x + 2).