A-Level Christmas Calculated Colouring 2022

Number	$\mathbf{2}$	$\mathbf{1 0}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{3 6}$
Colour	Brown	Light Blue	Dark Blue	Yellow	Orange
Number	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Colour	Red	Purple	Green	Grey	Black

A-Level Christmas Calculated Colouring 2022

Number	$\mathbf{2}$	$\mathbf{1 0}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{3 6}$
Colour	Brown	Light Blue	Dark Blue	Yellow	Orange
Number	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Colour	Red	Purple	Green	Grey	Black

1 The only positive root of the polynomial $p(x)=x^{3}+2 x^{2}-5 x-6$.
2 The x-coordinate of the solution to the simultaneous equations
$2 x+4 y=22$ and $5 x+3 y=27$
3 The x-coordinate of the centre of the circle $x^{2}-4 x+y^{2}-6 y-12=0$
4 Find a such that the coefficient of x^{3} in the expansion of $(x+a)^{4}$ is 8 .
5 The y-intercept of the quadratic $y=(x+1)^{2}+2$.
6 One third of the discriminant of the quadratic function $2 x^{2}+5 x+2$.
7 The absolute value of the gradient of the line passing through $(-8,6)$ and $(-5,-3)$.
8 The denominator when you rationalise

3

One half of the fourth square number.
10 The radius of the circle $x^{2}-4 x+y^{2}-6 y-12=0$.
$x^{2}+5 x-14$
$11 \frac{x^{2}+5 x-14}{x^{2}+2 x-8}$ can be written in the form $\frac{x+a}{x+b}$. Find the value of a.
12 Find $\sqrt{8}$ in the form $a \sqrt{2}$. The answer is a.
13 The x-coordinate of the turning point of the quadratic $y=x^{2}-4 x-6$.
14 The number of intersections between the line $y=2 x+1$ and $y=2 x^{2}+2 x-5$.
15 The positive x-coordinate of the intersection of the circle $(x-2)^{2}+(y-3)^{2}=25$ and the line $-4 x+3 y=1$.
16 The denominator when you rationalise $\frac{3}{\sqrt{5}}$.
17 The repeated root of the polynomial $p(x)=x^{3}-3 x^{2}+4$.
18 The power of 3 in the prime factorisation of 43740.
19 The number of solutions to $\tan (4 x)=\frac{1}{2}$ in the interval $0^{\circ} \leq x \leq 360^{\circ}$.

20 The radius of the circle $x^{2}-2 x+y^{2}+6 y-134=0$.
21 Find b such that $\sqrt{252}=a \sqrt{b}$.
22 The x-coordinate of the turning point of the quadratic $y=x^{2}-14 x+61$.
23 The y-intercept of the line parallel to $y=2 x-4$ passing through $(-2,3)$.
24 The absolute value of the y-coordinate of the intersection of the lines $4 x-5 y=7$ and $-2 x+y=7$.

25 A triangle has side lengths $\frac{}{\sqrt{3}}$ and 8 with the angle subtended between them being 60°. Find the area.
26 Find a such that $(x+a)$ is the only linear factor of the polynomial $p(x)=x^{3}+11 x^{2}+25 x+8$
$2746656^{\frac{1}{3}}$
28 The area of the triangle with vertices the origin and the intersections of the line $y=-\frac{x}{2}+6$ and the axes.
29 The sum of the roots of $p(x)=x^{3}-12 x^{2}+47 x-60$.
30 The y-coordinate of the solution to the simultaneous equations $2 x+4 y=22$ and $5 x+3 y=27$.
31 The number of solutions to $\sin (x)=\frac{1}{2}$ in the interval $0^{\circ} \leq x \leq 540^{\circ}$.
32 Find a such that when you rationalise the denominator of $\frac{3}{a+\sqrt{5}}$ you obtain $3 \sqrt{5}-6$.
33 Given that $(x-2)$ and $(x+1)$ are factors of $p(x)=x^{4}+3 x^{3}+a x^{2}-3 x+b$, find the absolute value of a.
34 The length of the line segment between $(-1,6)$ and $(3,3)$.
35 The x-coordinate of the intersection point of the lines $y=x-3$ and $y=-3 x+5$.
36 Find c such that $(x+1)(x-6)^{2}=x^{3}-11 x^{2}+24 x+c$
37 The gradient of $y=x^{2}+x+5$ when evaluated at a has value 7 . Find a.
38 The square of the radius of the circle where $A(-2,3)$ and $B(-2,-9)$ are
endpoints of a diameter.
39 Find b such that $(2 x+1)(x-b)^{2}=2 x^{3}-11 x^{2}+12 x+9$.
40 The coefficient of x^{2} in the expansion of $(2+x)^{n}$ is 24 . Find n.
41 Find a such that $\sqrt{63}=a \sqrt{b}$.
42 Double the he coefficient of x^{5} in the expansion of $(x+3)^{6}$
43 The radius of the circle $(x+1)^{2}+y^{2}=9$.
44 The value of $\binom{7}{2}+3\binom{5}{1}$, where $\binom{a}{b}$ means " a choose b "
45 The power of x when you simplify $\frac{x^{3} y^{2} z}{2 x} \times \frac{x^{4} y}{3 x^{3} z^{2}}$
46 The coefficient of x^{2} term appearing in the derivative of $y=x^{4}+12 x^{3}+3 x^{2}$
47 The gradient of the line perpendicular to $y=-\frac{1}{3} x+2$.
48 The y-intercept of the line passing through $(-4,2)$ and $(-1,8)$.
49 The absolute value of the y-coordinate of the turning point of the quadratic $y=x^{2}-4 x-6$.
50 The discriminant of the quadratic $y=x^{2}+6 x+7$.
$51 \quad 14641^{\frac{1}{4}}$.
52 The x-coordinate of the intersection point the quadratic $y=x^{2}-2 x-5$ and the line $y=4 x-14$
53 The x-intercept of the line $y=4 x-8$.
54 The gradient of the line passing through $(1,0)$ and $(3,10)$.
55 Given that $(x-2)$ and $(x+1)$ are factors of $p(x)=x^{4}+3 x^{3}+a x^{2}-3 x+b$, find b.
56 A right angled triangle has two sides which are of length 3 and 5 . Given that all sides are integer length what is the length of the other side.
57 One ninth of the y-intercept of the tangent to $y=x^{3}-14 x^{2}-16 x+96$ when $x=1$
$58 a^{2}=12 \times 108$. Find a.
$59 \frac{x^{2}+5 x-14}{x^{2}+2 x-8}$ can be written in the form $\frac{x+a}{x+b}$. Find the value of b.
60 Absolute value of the repeated solution of $x^{2}+8 x+16=0$.
61 The x-coordinate of the point where the circles with equations

$$
x^{2}+y^{2}=16 \text { and } x^{2}-18 x+y^{2}+56=0 \text { touch. }
$$

62 The number of factors of a prime number.
63 The real valued solution to $2^{x}=4^{5}$.
64 The remainder on dividing $x^{3}+4 x^{2}+5 x+12$ by $(x+2)$.

