A-Level Christmas Calculated Colouring 2021

Answer	3	4	1	12	$25 / 2$	36	8	10
Colour	Brown	Yellow	Grey	Blue	Red	Green	Light Green	Orange

1) The absolute value of the product of the gradients of two lines which are perpendicular.
2) Find a such that $\sqrt{a}=2 \sqrt{2}$.
3) The power of z when you simplify $\frac{x z^{3}}{y^{3}} \times \frac{x^{5} y^{4}}{3 x^{2} z^{2}}$.
4) The radius of the unit circle.
5) The x - coordinate of the centre of the circle
$x^{2}-8 x+y^{2}+10 y+16=0$.
6) The x-coordinate of the turning point of $y=x^{2}-6 x+21$.
7) Find b such that $(x-2)(x+b)^{2}=x^{3}+6 x^{2}-32$.
8) The remainder on dividing $x^{3}+4 x^{2}+3 x+4$ by $(x+1)$.
9) The gradient of the line
perpendicular to $y=-\frac{1}{4} x+3$.
10) Given that $(x+5)$ and $(x-1)$ are factors of the polynomial $x^{4}+a x^{3}-15 x^{2}-19 x+b$, find a.
11) The gradient of the line passing through $(-2,-1)$ and $(0,5)$.
12) One quarter of the discriminant of the quadratic $y=2 x^{2}+8 x+3$.
13) The radius of the circle
$x^{2}+(y-3)^{2}=100$.
14) The denominator when you rationalise $\frac{7}{\sqrt{10}}$
15) The coefficient of x^{2} in the
expansion of $(1+3 x)^{n}$ is 252 . Find n
16) The y-coordinate of the turning point of $y=x^{2}-6 x+21$.
17) The largest root (in absolute value) of the equation $3 x^{2}-42 x+72=0$.
18) $7776^{\frac{2}{5}}$.
19) Find y such that $2 x+4 y=56$ and $x+y=20$.
20) The denominator of $\frac{1}{\sqrt{8}}$ when rationalised.
21) $20736^{\frac{1}{4}}$.
22) $2 \times\binom{ 6}{2}+\binom{4}{2}$ where $\binom{a}{b}$
represents a choose b.
23)The area of the triangle sandwiched between the x and y-axes and the line which passes through $(-2,9)$ and $(6,-3)$.
23) Find x such that $2 x+4 y=56$ and $x+y=20$.
24) Find n such that the coefficient of x^{3} in the expansion of $(1+3 x)^{n}$ is 540.
25) The number of intersection points of the graphs for $x^{2}+y^{2}=9$ and the equation $y=2 x+1$
26) The gradient of the line which is perpendicular to $y=-x+3$.
27) The square of the radius for the circle $x^{2}+4 x+y^{2}-8 y-5=0$
28) $\sqrt{625}$
29) The x-intercept of the straight pin $-x-4 y=-1$.
30) Find the coefficient of x^{3} in the expansion of $(2+3 x)^{4}$ and then divide it by 18 .
31) The power of x when you simplify
$\frac{x z^{3}}{y^{3}} \times \frac{x^{5} y^{4}}{3 x^{2} z^{2}}$.
32) Bonus question....
33) The point $(x, x+1), \quad x \in \mathbb{Z}^{+}$ lies on the circle
$x^{2}-10 x+y^{2}-10 y+25=0$. Find
the y-coordinate for the largest x and then multiply by 4.
34) The highest common factor of 252 and 180
35) Given that $(x+5)$ and $(x-1)$ are factors of the polynomial
$p(x)=x^{4}+a x^{3}-15 x^{2}-19 x+b$, find b and add 6.
36) The solution of $2^{x}=4^{5}$.
37) The length of the line segment between $(-5,-1)$ and $(3,5)$.
38) The radius squared of the circle $x^{2}-8 x+y^{2}+10 y+16=0$.
39) The power of 11 in the prime factor decomposition of 1980.
40) $\sqrt{1296}$
41) The y-intercept of the line parallel
to $-2 x+y=12$ which passes
through $(-4,4)$.
42) Find a such that $\sqrt{63}=a \sqrt{7}$.
43) Find k such that the point $(7,6)$
lies on the circle
$(x-k)^{2}+(y-k)^{2}=25$.
44) The intersection point of the line $x+a y=34$ and $y=x+6$ is $(4,10)$. Find a.
45) The repeated root of the polynomial
$P(x)=x^{3}-12 x^{2}+45 x-54$
46) The coefficient when you
differentiate $y=4 x^{3}$.
47) One twentieth of the coefficient of x when you expand, by the binomial theorem, $(2+3 x)^{5}$
48) The points $A(-4,-3)$ and $B(4,3)$ is the diameter of a circle. Find the radius squared of this circle.
49) The y-intercept of the straight line $25 x+6 y=150$
