Christmas Calculated Colouring Questions

Answer each question and then use the key to find which colour.

1) The sum of the coefficients of the x^{2} and x^{3} terms in the expansion of $(1+x)^{5}$.
2) The gradient of $y=3 x^{2}+6 x+1$ evaluated at $x=1$.
3) Double the radius of the circle $x^{2}+4 x+y^{2}-6 y-23=0$.
4) One less than the sixth triangular number.
5) The y-coordinate of the vertex of the quadratic $y=x^{2}-10 x+37$.
$6)$ The x-intercept of the line passing through $(8,3)$ and $(12,2)$.
6) $\int_{0}^{4} 2 x+1 \mathrm{~d} x$
7) Divide the coefficient of x^{2} in the expansion of $(3+2 x)^{4}$ by 18 .
8) Number of integers satisfying $x^{2}-64<0$
9) One third of the x value which solves the simultaneous equations
$3 x+4 y=43$ and $x-2 y=16$.
10) The smallest such x-coordinate such that (x, y) is an intersection point of the line $y=2 x-12$ and the quadratic $y=x^{2}-18 x+87$.
11) Take the y value which solves the simultaneous equations $3 x+4 y=43$ and $x-2 y=16$ and then multiply by -14 .
12) The value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for $y=x^{3}+6 x+17$ when $x=\frac{5}{3}$.
13) Find $a \in \mathbb{Z}$ such that $f(a)=40474$ where $f(x)=4 x^{3}+3 x+17$.
14) The gradient of $y=x^{3}+x^{2}+4 x$ evaluated at $x=2$
15) The remainder when you compute $6 x^{3}+13 x^{2}+12 x+29$ is divided by $(2 x+3)$.
16) The area of the triangle enclosed by the x-axis and the lines $-6 x-5 y=-30$ and $-3 x+y=6$.
17) $\binom{5}{2}+\binom{5}{3}$ (NB: These are binomial coefficients)
18) The triangle $A B C$ has area $21 \sqrt{3}$. Side $A B=7 \mathrm{~cm}$ and the angle between $A B$ and $B C$ is 60°. Find the length of $B C$
19) The number of sides on a Icosagon.
20) The value p such that $\sqrt{27}+\sqrt{48}+\sqrt{75}=p \sqrt{3}$.
21) Double the distance between $(3,6)$ and $(13,6)$.
22) The radius of the circle $x^{2}-4 x+y^{2}-6 y-428=0$
23) Multiply by 4 the radius of the circle $x^{2}-16 x+y^{2}+12 y+75=0$
24) The number of solutions to the equation $\cos (5 x)=\frac{1}{2}$ in the range $0 \leq \theta \leq 360$.
25) The coefficient of x^{7} in the expansion of $(3+x)^{n}$ is 3240 . Find n.
26) The y-intercept of the line parallel to $y=2 x+2$ which passes through ($-4.5,0$)
27) The x-coordinate of the stationary point of $y=-x^{2}+18 x-70$.
28) The only positive root of $x^{4}+x^{3}-19 x^{2}-49 x-30=0$
29) Add one to the y-coordinate of the stationary point of $y=-x^{2}+18 x-70$.
30) Find x_{1}, such that the point $\left(x_{1}, y_{1}\right)$, is an intersection of $x-y=-6$ and $y=x^{2}-3 x-39$, where x_{1} is positive.
31) $\sqrt[5]{759375}$
32) Solve $4^{x+2}=2^{3 x-1}$.
33) The x-intercept of the line $-2 x-3 y=-30$.
34) Double the smallest such y-coordinate such that (x, y) is an intersection point of the line $y=2 x-12$ and the quadratic $y=x^{2}-18 x+87$.
35) The denominator of $\frac{1}{\sqrt{5}}$ when rationalised.
36) $\int_{1}^{2 \sqrt[3]{2}} 3 x^{2} \mathrm{~d} x$
37) The repeated root of $x^{3}-12 x^{2}+45 x-50=0$.
38) Work out the area bounded by the x-axis, the line $2 x+3 y=24$ and the line $-3 x+2 y=42$. Divide this answer by 31.2.
39) The power of z when you simplify $\frac{\left(x^{2} z^{9}\right)^{3} y^{4}}{\left(z^{4} y^{2}\right)^{3}}$
40) The length of the line $O A$ where O is the origin and A is the point of intersection of the lines $4 x+5 y=32$ and $4 x-13 y=-40$.
41) Discriminant of the quadratic $x^{2}+3 x+1$.
42) The x-coordinate of the vertex of the quadratic $y=x^{2}-10 x+37$.
43) The x-coordinate of the local minimum for the function

$$
y=\frac{x^{3}}{3}-12 x^{2}+135 x+12
$$

45) The coefficient of x when you expand and simplify

$$
(x+2)(x+1)(x-3)+(x+2)(x+3)+7(x+3)
$$

46) The gradient of the line joining $(-6,2)$ to $(2,42)$
47) The coefficient of x^{2} in the expansion of $\frac{1}{12}(1+2 x)^{10}$
48) Find y_{1}, such that the point $\left(x_{1}, y_{1}\right)$, is an intersection of $x-y=-6$ and $y=x^{2}-3 x-39$, such that x_{1} is positive.
49) The gradient of the line perpendicular to $y=-\frac{1}{9} x+13$.
50) The square root of the result of evaluating $y=3^{x}+10 x+24$ at $x=3$.
51) Subtract 5 from the denominator when you rationalise $\frac{3}{5+\sqrt{5}}$.
52) The x-coordinate of the local maximum for the function

$$
y=\frac{x^{3}}{3}-12 x^{2}+135 x+12
$$

53) The square of the y-coordinate of the centre of the circle

$$
x^{2}-4 x+y^{2}-6 y-428=0
$$

Colour	Answer Value	Colour	Answer Value
Black	10	Green	5
Brown	21	Orange	7
White	15	Red	12
Blue	9	Yellow	20

