Christmas Calculated Colouring Questions

Answer each question and then use the key to find which colour.

- 1) The sum of the coefficients of the x^2 and x^3 terms in the expansion of $(1 + x)^5$.
- 2) The gradient of $y = 3x^2 + 6x + 1$ evaluated at x = 1.
- 3) Double the radius of the circle $x^2 + 4x + y^2 6y 23 = 0$.
- 4) One less than the sixth triangular number.
- 5) The *y*-coordinate of the vertex of the quadratic $y = x^2 10x + 37$.
- 6) The *x*-intercept of the line passing through (8,3) and (12,2). $\int_{-1}^{4} e^{-x} dx$
- 7) $\int_0 2x + 1 \, \mathrm{d}x$
- 8) Divide the coefficient of x^2 in the expansion of $(3 + 2x)^4$ by 18.
- 9) Number of integers satisfying $x^2 64 < 0$
- 10) One third of the *x* value which solves the simultaneous equations 3x + 4y = 43 and x 2y = 16.
- 11) The smallest such *x*-coordinate such that (x, y) is an intersection point of the line y = 2x 12 and the quadratic $y = x^2 18x + 87$.
- 12) Take the *y* value which solves the simultaneous equations 3x + 4y = 43 and x 2y = 16 and then multiply by -14.

13) The value of
$$\frac{d^2 y}{dx^2}$$
 for $y = x^3 + 6x + 17$ when $x = \frac{5}{3}$.

- 14) Find $a \in \mathbb{Z}$ such that f(a) = 40474 where $f(x) = 4x^3 + 3x + 17$.
- 15) The gradient of $y = x^3 + x^2 + 4x$ evaluated at x = 2
- 16) The remainder when you compute $6x^3 + 13x^2 + 12x + 29$ is divided by (2x + 3).
- 17) The area of the triangle enclosed by the *x*-axis and the lines -6x - 5y = -30 and -3x + y = 6. 18) $\binom{5}{2} + \binom{5}{3}$ (NB: These are binomial coefficients)

19) The triangle *ABC* has area $21\sqrt{3}$. Side *AB* = 7*cm* and the angle between *AB* and *BC* is 60°. Find the length of *BC*

- 20) The number of sides on a lcosagon.
- 21) The value p such that $\sqrt{27} + \sqrt{48} + \sqrt{75} = p\sqrt{3}$.
- 22) Double the distance between (3,6) and (13,6).

- The radius of the circle $x^{2} 4x + y^{2} 6y 428 = 0$ 23)
- 24)
- Multiply by 4 the radius of the circle $x^2 16x + y^2 + 12y + 75 = 0$ The number of solutions to the equation $\cos(5x) = \frac{1}{2}$ in the range 25) $0 < \theta < 360.$
- The coefficient of x^7 in the expansion of $(3 + x)^n$ is 3240. Find *n*. 26)
- The *y*-intercept of the line parallel to y = 2x + 2 which passes 27) through (-4.5,0)
- The *x*-coordinate of the stationary point of $y = -x^2 + 18x 70$. 28)
- The only positive root of $x^4 + x^3 19x^2 49x 30 = 0$ 29)
- Add one to the y-coordinate of the stationary point of 30) $y = -x^2 + 18x - 70.$
- Find x_1 , such that the point (x_1, y_1) , is an intersection of x y = -631) and $y = x^2 - 3x - 39$, where x_1 is positive.
- √⁵√759375 32)
- Solve $4^{x+2} = 2^{3x-1}$. 33)
- The *x*-intercept of the line -2x 3y = -30. 34)
- Double the smallest such y-coordinate such that (x, y) is an 35) intersection point of the line y = 2x - 12 and the quadratic $y = x^2 - 18x + 87.$
- The denominator of $\frac{1}{\sqrt{5}}$ when rationalised. 36)
- $\int_{1}^{2\sqrt[3]{2}} 3x^2 \, \mathrm{d}x.$ 37)
- The repeated root of $x^3 12x^2 + 45x 50 = 0$. 38)
- Work out the area bounded by the x-axis, the line 2x + 3y = 24 and 39) the line -3x + 2y = 42. Divide this answer by 31.2.
- The power of z when you simplify $\frac{(x^2z^9)^3y^4}{(z^4y^2)^3}$ 40)
- The length of the line *OA* where *O* is the origin and *A* is the point of 41) intersection of the lines 4x + 5y = 32 and 4x - 13y = -40.
- Discriminant of the quadratic $x^2 + 3x + 1$. 42)
- The *x*-coordinate of the vertex of the quadratic $y = x^2 10x + 37$. 43)
- The x-coordinate of the local minimum for the function 44)

$$y = \frac{x^3}{3} - 12x^2 + 135x + 12.$$

45) The coefficient of *x* when you expand and simplify (x + 2)(x + 1)(x - 3) + (x + 2)(x + 3) + 7(x + 3)

- 46) The gradient of the line joining (-6,2) to (2,42)
- 47) The coefficient of x^2 in the expansion of $\frac{1}{12}(1+2x)^{10}$
- 48) Find y_1 , such that the point (x_1, y_1) , is an intersection of x y = -6and $y = x^2 - 3x - 39$, such that x_1 is positive.

49) The gradient of the line perpendicular to $y = -\frac{1}{9}x + 13$.

- 50) The square root of the result of evaluating $y = 3^{x} + 10x + 24$ at x = 3.
- 51) Subtract 5 from the denominator when you rationalise $\frac{3}{5+\sqrt{5}}$.
- 52) The *x*-coordinate of the local maximum for the function $y = \frac{x^3}{3} - 12x^2 + 135x + 12.$
- 53) The square of the *y*-coordinate of the centre of the circle $x^2 4x + y^2 6y 428 = 0$

Colour	Answer Value	Colour	Answer Value
Black	10	Green	5
Brown	21	Orange	7
White	15	Red	12
Blue	9	Yellow	20

