1) Complete the gaps in the below definition:

"For the ______ function f, given by $f: x \mapsto f(x)$, _____ $\in \mathbb{R}$, then providing that f(0), ____, f''(0), ..., $f^{(r)}(0)$ all have finite values, $f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(r)}(0)}{r!}x^r + \dots$ This is known as ______ theorem, and the power series is known as the _____.

2) Using Maclaurin's theorem and differentiation show that

$$e^{2x} = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + \dots + \frac{2^r x^r}{r!} + \dots$$
[6]

[5]

3) Given that x is so small that terms in x^3 and higher powers of x may be neglected, show that

$$11\sin(x) - 6\cos(x) + 5 = A + Bx + Cx^2$$

And state the values of the constants A, B and C.

[10]

4) a) Write down, in ascending powers of x the series for cos(4x) up to, and including the term in x^6

b) Hence, or otherwise, show that the first three non-zero terms in the expansion of $\sin^2(2x)$ are $4x^2 - \frac{16}{3}x^4 + \frac{128}{45}x^6$

[6]

5) Find, from first principles (i.e. by differentiation) the series expansion for $\ln(x)$ in ascending powers of (x - 1) up to and including the term in $(x - 1)^3$.

6) For the differential equation

$$(1+2x)\frac{dy}{dx} = x + 4y^2$$

find the series solution for y(x) in ascending powers of x, up to and including the term in x^3 . You may assume that $y(0) = \frac{1}{2}$.

[10]

7) Using a series approximation to the integrand (up to, and including, the x^6 term estimate the value of $\int_0^{0.6} e^{-x^2} dx$, giving your answer to 3 decimal places.

[8]

8) a) If $y = \ln(\cos(x))$, prove that

$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2}\frac{dy}{dx} = 0$$

[7]

b) Hence, or otherwise, obtain the Maclaurin expansion of y(x) in terms of x up to and including the term in x^4 .

[8]

c) Using
$$x = \frac{\pi}{4}$$
 show that $\ln(2) \approx \frac{\pi^2}{16} \left(1 + \frac{\pi^2}{96} \right)$

[5]

9) The function y(x) satisfies y'' = xy. By differentiating n times, show that, for ≥ 1 , $y^{(n+2)}(0) = ny^{(n-1)}(0)$. Given that y(0) = 1 and y'(0) = 0, find the first four non-vanishing terms of the Maclaurin series for y.

[10]

Торіс	Score	Confident?	Need to review?	Need a lot more work?	WORK DONE
Knowing the definition	/5				
Showing a Maclaurin expansion.	/6				
Approximating functions for small <i>x</i> .	/10				
Using standard expansion to derive other expansions.	/10				
Deriving a Taylor expansion	/8				
Finding a series solution to a differential equation.	/10				
Using series to approximate definite integrals	/8				
Deriving a Maclaurin expansion by differentiating.	/20				
A taster undergraduate question	/10				

Chapter 2 summary	/87							<40%
		%	A=80%	B=70%	C=60%	D=50%	E=40%	U