
A-Level Calculated Colouring Christmas 2019

6	3	25	100	18	4	5	9
Red	Blue	Yellow	Orange	Light Green	Dark Green	Grey	Brown

- 1. The largest root of $x^2 8x + 12 = 0$.
- 2. Find *a* such that $\sqrt{63} = a\sqrt{b}$, where $a, b \in \mathbb{Z}$.
- 3. Evaluate $\left(\frac{1}{5}\right)$
- 4. Find the gradient of the line 6x 2y + 8 = 0.
- 5. The *x* solution to the pair of simultaneous equations 2x + 3y = 24 and -x + 4y = 10.
- 6. The discriminant of $y = 3x^2 + 13x + 12$.
- 7. The radius squared of $x^2 6x + y^2 8y 75 = 0$.
- 8. The highest common factor of 270 and 252.
- 9. The *x*-coordinate of the minimum point of $y = 2x^3 15x^2 36x$.
- 10. Divide the coefficient of the x^2 term in the binomial expansion of $(3 + 2x)^3$ by 2.
- 11. Let $f(x) = 2x^3 3x^2 + 7x$. Find $a \in \mathbb{R}$ such that f(a) = 10818.
- 12. The *y* solution to the pair of simultaneous equations 2x + 3y = 35 and -x + 4y = 32.
- 13. Double the number of faces of a Rhombicosahedron.
- 14. Find the *y*-intercept of the line 6x 2y + 8 = 0.
- **15.** $78125^{\frac{2}{7}}$.

1

16. Find *a* such that

$$x^{3} + 8x^{2} + 9x - 18 = (x + a)(x + 6)(x - 1).$$

7. The power of *z* when you simplify $\frac{(x^{2}z^{3})^{3}y^{4}}{z^{3}y^{5}}$.

- 18. Find *b* when $\sqrt{108}$ is written in the form $a\sqrt{b}$.
- 19. The gradient of the line segment joining A(-2,2) to B(3,27).
- 20. Subtract 13 from the denominator you obtain when you rationalise $\frac{3}{5+\sqrt{3}}$.
- 21. Where the tangent to the circle $(x-1)^2 + (y-1)^2 = 25$ at the point (6,1) crosses the *x*-axis.
- 22. The gradient of $y = 3x^3 + 10x^2 + 24x$ at x = 2.
- 23. The number of solutions to the equation sin(3x) = 0.7in the range $0^{\circ} \le x \le 150^{\circ}$.
- 24. The *y*-coordinate of the centre of the circle $x^2 6x + y^2 10y + 18 = 0$.
- 25. The discriminant of the quadratic $y = 3x^2 + 8x 3$.
- 26. Expand and simplify (x + 1)(x + 4)(x - 1) + (x + 3)(x + 2) + 6(x + 1)then multiply the coefficient of x by 10.
- **27.** Solve $3^{2x+1} = 27^{\frac{7}{3}}$.
- 28. The square of the radius of the circle $x^2 2x + y^2 4y 13 = 0.$
- **29**. The *x*-intercept of the line 4x + 9y = 72.
- 30. The second derivative of $y = \frac{1}{2}x^3 + 3x^2 + 4$.evaluated at the point $\left(1, \frac{15}{2}\right)$.
- 31. Find *a* when $\sqrt{108}$ is written in the form $a\sqrt{b}$.

- 32. The repeated root of $f(x) = x^3 11x^2 + 24x + 36$.
- 33. The positive *x* solution when you solve $x^2 + y^2 = 17$ and -x + y = -3 simultaneously.
- 34. The coefficient of x^3 in the expansion of $(x + 1)^4$.
- 35. Find *a* such that $\sqrt{12} + \sqrt{147} \sqrt{75}$ simplifies into the form $a\sqrt{b}$.
- **36.** Solve $4^{2x+1} = 2^{2x+14}$
- 37. Half of $\begin{pmatrix} 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 7 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ (binomial coefficients)
- 38. Find *b* such that $\sqrt{12} + \sqrt{147} \sqrt{75}$ simplifies into the form $a\sqrt{b}$.
- 39. The *y*-coordinate of the vertex of $y = -x^2 4x 1$.
- 40. The *y*-coordinate of the minimum point of $y = x^2 10x + 43$.
- 41. The remainder when $x^3 + 7x^2 + 17x + 21$ is divided by (x + 3).
- 42. A single digit square number that is the same as the answer to Question 14.
- 43. The *x*-coordinate of the minimum point of $y = x^2 10x + 43$.
- 44. The area of the triangle formed from the points A(5,2), B(6,5) and C(9,4).

- 45. The *y*-coordinate of the intersection point of the curve $y = x^2 + 3x + 1$ and the line $x + \frac{1}{2}y = \frac{7}{2}$ which has positive *x*-coordinate.
- 46. The area of the triangle ABC is $\frac{15\sqrt{3}}{4}$ with the angle at *C* equal to 60° and side length CA = 3. Find the length of side *CB*.
- 47. (x + 1) and (x + 3) are both factors of $p(x) = x^3 + ax^2 + 7x + b$. Find *a*.
- 48. The radius of the circle $x^2 6x + y^2 10y + 18 = 0$.
- 49. The coefficient of x^3 in the expansion of $(3 + 2x)^n$ is 96. Find *n*.
- 50. The *y*-coordinate of the point of intersection of the line $l_1: 4x + 9y = 72$ and the line perpendicular to l_1 which passes through the point (13,13).
- 51. The denominator of $\frac{1}{\sqrt{3}}$ when rationalised.
- 52. The square of the *x*-coordinate of the centre of the circle $x^2 6x + y^2 10y + 18 = 0$.
- 53. (x + 1) and (x + 3) are both factors of $p(x) = x^3 + ax^2 + 7x + b$. Find *b*.=
- 54. The *x*-intercept of the line perpendicular to y = 3x 17 passing through the point (6,1).