A-Level Calculated Colouring Christmas 2019

1. The largest root of $x^{2}-8 x+12=0$.
2. Find a such that $\sqrt{63}=a \sqrt{b}$, where $a, b \in \mathbb{Z}$.
3. Evaluate $\left(\frac{1}{5}\right)^{-2}$.
4. Find the gradient of the line $6 x-2 y+8=0$.
5. The x solution to the pair of simultaneous equations $2 x+3 y=24$ and $-x+4 y=10$.
6. The discriminant of $y=3 x^{2}+13 x+12$.
7. The radius squared of $x^{2}-6 x+y^{2}-8 y-75=0$.
8. The highest common factor of 270 and 252 .
9. The x-coordinate of the minimum point of $y=2 x^{3}-15 x^{2}-36 x$.
10. Divide the coefficient of the x^{2} term in the binomial expansion of $(3+2 x)^{3}$ by 2 .
11. Let $f(x)=2 x^{3}-3 x^{2}+7 x$. Find $a \in \mathbb{R}$ such that $f(a)=10818$.
12. The y solution to the pair of simultaneous equations $2 x+3 y=35$ and $-x+4 y=32$.
13. Double the number of faces of a Rhombicosahedron.
14. Find the y-intercept of the line $6 x-2 y+8=0$.
15. $78125^{\frac{2}{7}}$.
16. Find a such that

$$
x^{3}+8 x^{2}+9 x-18=(x+a)(x+6)(x-1)
$$

17. The power of z when you simplify $\frac{\left(x^{2} z^{3}\right)^{3} y^{4}}{z^{3} y^{5}}$.
18. Find b when $\sqrt{108}$ is written in the form $a \sqrt{b}$.
19. The gradient of the line segment joining $A(-2,2)$ to $B(3,27)$.
20. Subtract 13 from the denominator you obtain when you rationalise $\frac{3}{5+\sqrt{3}}$.
21. Where the tangent to the circle $(x-1)^{2}+(y-1)^{2}=25$ at the point $(6,1)$ crosses the x-axis.
22. The gradient of $y=3 x^{3}+10 x^{2}+24 x$ at $x=2$.
23. The number of solutions to the equation $\sin (3 x)=0.7$ in the range $0^{\circ} \leq x \leq 150^{\circ}$.
24. The y-coordinate of the centre of the circle $x^{2}-6 x+y^{2}-10 y+18=0$.
25. The discriminant of the quadratic $y=3 x^{2}+8 x-3$.
26. Expand and simplify
$(x+1)(x+4)(x-1)+(x+3)(x+2)+6(x+1)$
then multiply the coefficient of x by 10 .
27. Solve $3^{2 x+1}=27^{\frac{7}{3}}$.
28. The square of the radius of the circle $x^{2}-2 x+y^{2}-4 y-13=0$.
29. The x-intercept of the line $4 x+9 y=72$.
30. The second derivative of $y=\frac{1}{2} x^{3}+3 x^{2}+4$. evaluated at the point $\left(1, \frac{15}{2}\right)$.
31. Find a when $\sqrt{108}$ is written in the form $a \sqrt{b}$.
32. The repeated root of $f(x)=x^{3}-11 x^{2}+24 x+36$.
33. The positive x solution when you solve $x^{2}+y^{2}=17$ and $-x+y=-3$ simultaneously.
34. The coefficient of x^{3} in the expansion of $(x+1)^{4}$.
35. Find a such that $\sqrt{12}+\sqrt{147}-\sqrt{75}$ simplifies into the form $a \sqrt{b}$.
36. Solve $4^{2 x+1}=2^{2 x+14}$.
37. Half of $\binom{3}{2}+\binom{7}{1}+\binom{2}{1}$ (binomial coefficients)
38. Find b such that $\sqrt{12}+\sqrt{147}-\sqrt{75}$ simplifies into the form $a \sqrt{b}$.
39. The y-coordinate of the vertex of $y=-x^{2}-4 x-1$.
40. The y-coordinate of the minimum point of $y=x^{2}-10 x+43$.
41. The remainder when $x^{3}+7 x^{2}+17 x+21$ is divided by $(x+3)$.
42. A single digit square number that is the same as the answer to Question 14.
43. The x-coordinate of the minimum point of $y=x^{2}-10 x+43$
44. The area of the triangle formed from the points $A(5,2)$, $B(6,5)$ and $C(9,4)$.
45. The y-coordinate of the intersection point of the curve $y=x^{2}+3 x+1$ and the line $x+\frac{1}{2} y=\frac{7}{2}$ which has positive x-coordinate.
46. The area of the triangle $A B C$ is $\frac{15 \sqrt{3}}{4}$ with the angle at C equal to 60° and side length $C A=3$. Find the length of side $C B$.
47. $(x+1)$ and $(x+3)$ are both factors of $p(x)=x^{3}+a x^{2}+7 x+b$. Find a.
48. The radius of the circle $x^{2}-6 x+y^{2}-10 y+18=0$.
49. The coefficient of x^{3} in the expansion of $(3+2 x)^{n}$ is 96. Find n.
50. The y-coordinate of the point of intersection of the line $l_{1}: 4 x+9 y=72$ and the line perpendicular to l_{1} which passes through the point $(13,13)$.
51. The denominator of $\frac{1}{\sqrt{3}}$ when rationalised.
52. The square of the x-coordinate of the centre of the circle $x^{2}-6 x+y^{2}-10 y+18=0$.
53. $(x+1)$ and $(x+3)$ are both factors of $p(x)=x^{3}+a x^{2}+7 x+b$. Find $b .=$
54. The x-intercept of the line perpendicular to $y=3 x-17$ passing through the point $(6,1)$.
