A-Level Further Maths Calculated Colouring Christmas 2019

6	3	25	100	18	4
Green	Yellow	Red	Pink	Blue	Orange

- 1) The imaginary part of 3 + 6i.
- 2) Consider the linear transformation x' = 6x + 18y, y' = 3x + 4y. Represent this transformation by the matrix *A*, what is the entry $A_{1,1}$?
- 3) The real part of the complex solutions of $x^3 12x^2 + 61x 150 = 0$.
- 4) One quarter of the imaginary part of (2 + 3i)(4 + 6i).
- 5) The imaginary part of $\frac{1+2i}{\frac{1}{12}(1+i)}$.
- 6) The *x* solution of the linear system $\begin{pmatrix}
 2 & 3 \\
 4 & 1
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix} =
 \begin{pmatrix}
 24 \\
 18
 \end{pmatrix}.$
- 7) Find the denominator of the argument (in radians) of the complex number $\frac{1}{2} + i\frac{\sqrt{3}}{2}$.
- 8) Let z = a + 2i. Find The real part of the solution to the equation $z^3 = -9 + 46i$ (where the real and imaginary parts of *z* are both integers).
- 9) b when you express $\operatorname{arcosh}(2)$ in the form $\ln\left(a+\sqrt{b}\right)$.
- 10) The real part of the number z such that

 $z^2 = -27 + 36i$ where z lies in the positive quadrant.

- 11) The scale factor of the transformation represented by $\begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix}$.
- 12) The square of the magnitude of the complex number

3 + 4i.

- 13) The square of the positive *x*-coordinate where the ellipse $4x^2 + 10y^2 = 100$ crosses the *x*-axis.
- 14) Square the denominator obtained when you evaluate sech $(\ln(3))$.
- 15) The absolute value of the imaginary part of the solutions to the equation $z^2 200z + 10625$.
- 16) Express the ellipse $\frac{x^2}{25} + \frac{y^2}{10} = 1$ in the form $ax^2 + by^2 = c$ where a and b are integers in the

 $ax^2 + by^2 = c$ where *a* and *b* are integers in their simplest form. Double *c*.

- 17) The radius of the locus satisfying |z (3 + 2i)| = 100.
- 18) Consider a mass oscillating on a spring. It is proposed that the frequency can be modelled as $f = pk^{\alpha}m^{\beta}x^{\gamma}$ where *p* is a constant, *k* is the spring constant in kgs⁻², *m* is the mass and *x* is the maximum extension of the spring in metres. Find α and multiply it by 200.
- 19) The vertical asymptotes of $\frac{x^2 + 3x + 1}{x^2 104x + 400}$ are

x = a and x = b where b > a. Find b.

20) Let
$$z = 8 + \sqrt{36i}$$
, find zz^* .

- 21) The determinant of $\begin{pmatrix} 4 & -1 \\ 2 & 4 \end{pmatrix}$.
- 22) The bottom entry of the right hand side when you write the simultaneous equations 2x + 3y = 24 and 4x + y = 18 in matrix form.

The real part of $\frac{1+2i}{\frac{1}{12}(1+i)}$. 23) Given that $\sinh(x) = \frac{3}{4}$, find $\sinh(2x)$ and multiply the 24) denominator by 2. The imaginary part of (3 + 2i) + (4 + 20i) - (3 + 4i). 25) *n* such that $(1 + 3i)^n = 28 - 96i$. 26) The absolute value of the imaginary part of the 27) complex solutions of $x^3 - 12x^2 + 61x - 150 = 0$. The real part of (3 + 2i) + (4 + 20i) - (3 + 4i). 28) 29) If the transformation represented by the matrix $\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$ is applied to a shape, by what factor does the area of that shape increase. Find the cartesian equation of the locus 30) |z-2| = |z+6| in the form x = a. The number *a* such that $\sum_{n=1}^{n} r^2 = \frac{1}{a}n(n+1)(2n+1).$ 31) 40 subtracted from the imaginary part of $(3 + 2i)^3$. 32) 33) The *y* solution of the linear system $\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 24 \\ 18 \end{pmatrix}.$ The real root of $p(x) = x^3 - 12x^2 + 61x - 150$. 34) The imaginary part of the number z such that 35) $z^2 = -27 + 36i$ where z lies in the positive quadrant. Consider the linear transformation x' = 6x + 18y, 36) y' = 3x + 4y. Represent this transformation by the

matrix A, what is the entry A_{21} ?

- 37) The denominator of cosech $(\ln(3))$.
- 38) Find the equation of the vertical asymptote of the rational function $y = \frac{x+1}{x-3}$ in the form x = a.
- 39) Find the *y*-coordinate of the point that is mapped to $\begin{pmatrix} 203\\106 \end{pmatrix}$ by the transformation matrix $T = \begin{pmatrix} 2 & 1\\1 & 2 \end{pmatrix}$. 40) Let $A = \begin{pmatrix} 3 & 1\\11 & 4 \end{pmatrix}^{-1}$. Find $A_{2,2}$.
- 41) The square of the largest eigenvalue of the matrix $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}.$ 42) The value *a* such that $\frac{25}{-i} = ai.$
- 43) Write the ellipse $4x^2 + 10y^2 = 100$ in the standard

form
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. What is a^2 ?
44) Let $B = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 10 & 1 \\ 5 & 2 \end{pmatrix}$. Find $B_{1,1}$

- 45) The square of the denominator of the fraction obtained when evaluating $\cosh(\ln(5))$.
- 46) The absolute value of the real part of the solutions to the equation $z^2 200z + 10625$.
- 47) If an enlargement of scale factor 10 is applied to a shape, then what is the determinant of the matrix representing the transformation?

- 48) Find the x-coordinate of the point that is mapped to $\binom{203}{106}$ by the transformation matrix $T = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.
- Find the determinant of the matrix A^2 where 49) $A = \begin{pmatrix} 4 & 3 \\ 2 & 4 \end{pmatrix}.$
- The number a where 50)

$$\left[10\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)\right]^2 \text{ is expressed in }$$

the form ai.

- *a* such that $\begin{pmatrix} 3 & 17 \\ 2 & 5 \end{pmatrix} + \begin{pmatrix} 15 & 2 \\ 1 & 9 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. 51)
- The number *n* such that $\sum r = 171$. 52)
- 14 more than the y- coordinate for the maximum 53) point of the rational function $y = \frac{x^2 + 6x + 9}{x^2 + 3x + 3}$. Find $\frac{(2+3i)^2}{1+i}$ in the form $\frac{p}{q} + \frac{r}{s}i$. Find r + 1. 54)

- Find the determinant of the matrix $\begin{pmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{pmatrix}$. 55)
- Find *a* such that $r^{2}(r+1)^{2} r^{2}(r-1)^{2} = ar^{3}$. Use 56) this and the method of differences to prove $\sum^{n} r^{3} = \frac{1}{4}n^{2}(n+1)^{2}.$
- The square of the denominator for *x* such that 57) artanh(x) = ln $(\sqrt{3})$. The vertical asymptotes of $\frac{x^2 + 3x + 1}{x^2 - 104x + 400}$ are
- 58) x = a and x = b where b > a. Find a.
- Use dimensional analysis to find the dimensions of the 59) spring constant k in Hooke's Law, T = kx (T is tension, x is extension). Multiply the absolute value of the non-unity power in the dimensional expression by two.
- Consider the linear transformation x' = 6x + 18y, 60) y' = 3x + 4y. Represent this transformation by the matrix A, what is the entry $A_{2,2}$?