A-Level Further Maths Calculated Colouring Christmas 2019

6	3	25	100	18	4
Green	Yellow	Red	Pink	Blue	Orange

1) The imaginary part of $3+6 \mathrm{i}$.
2) Consider the linear transformation $x^{\prime}=6 x+18 y$, $y^{\prime}=3 x+4 y$. Represent this transformation by the matrix A, what is the entry $A_{1,1}$?
3) The real part of the complex solutions of $x^{3}-12 x^{2}+61 x-150=0$.
4) One quarter of the imaginary part of $(2+3 i)(4+6 i)$.
5) The imaginary part of $\frac{1+2 \mathrm{i}}{\frac{1}{12}(1+\mathrm{i})}$.
6) The x solution of the linear system
$\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right)\binom{x}{y}=\binom{24}{18}$.
7) Find the denominator of the argument (in radians) of the complex number $\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}$.
8) Let $z=a+2 \mathrm{i}$. Find The real part of the solution to the equation $z^{3}=-9+46 i$ (where the real and imaginary parts of z are both integers).
9) b when you express $\operatorname{arcosh}(2)$ in the form
$\ln (a+\sqrt{b})$.
10) The real part of the number z such that
$z^{2}=-27+36 i$ where z lies in the positive quadrant.
11) The scale factor of the transformation represented by $\left(\begin{array}{cc}25 & 0 \\ 0 & 25\end{array}\right)$.
12) The square of the magnitude of the complex number
$3+4 i$
13) The square of the positive x-coordinate where the ellipse $4 x^{2}+10 y^{2}=100$ crosses the x-axis.
14) Square the denominator obtained when you evaluate $\operatorname{sech}(\ln (3))$.
15) The absolute value of the imaginary part of the solutions to the equation $z^{2}-200 z+10625$.
16) Express the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{10}=1$ in the form $a x^{2}+b y^{2}=c$ where a and b are integers in their simplest form. Double c.
17) The radius of the locus satisfying $|z-(3+2 \mathrm{i})|=100$.
18) Consider a mass oscillating on a spring. It is proposed that the frequency can be modelled as $f=p k^{\alpha} m^{\beta} x^{\gamma}$ where p is a constant, k is the spring constant in kgs^{-2}, m is the mass and x is the maximum extension of the spring in metres. Find α and multiply it by 200 .
19) The vertical asymptotes of $\frac{x^{2}+3 x+1}{x^{2}-104 x+400}$ are $x=a$ and $x=b$ where $b>a$. Find b.
20) Let $z=8+\sqrt{36}$ i, find $z z^{*}$.
21) The determinant of $\left(\begin{array}{cc}4 & -1 \\ 2 & 4\end{array}\right)$.
22) The bottom entry of the right hand side when you write the simultaneous equations $2 x+3 y=24$ and $4 x+y=18$ in matrix form.
23) The real part of $\frac{1+2 \mathrm{i}}{\frac{1}{12}(1+\mathrm{i})}$.
24) Given that $\sinh (x)=\frac{3}{4}$, find $\sinh (2 x)$ and multiply the denominator by 2 .
25) The imaginary part of $(3+2 \mathrm{i})+(4+20 \mathrm{i})-(3+4 \mathrm{i})$.
26) n such that $(1+3 \mathrm{i})^{n}=28-96 \mathrm{i}$.
27) The absolute value of the imaginary part of the complex solutions of $x^{3}-12 x^{2}+61 x-150=0$.
28) The real part of $(3+2 \mathrm{i})+(4+20 \mathrm{i})-(3+4 \mathrm{i})$.
29) If the transformation represented by the matrix
$\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$ is applied to a shape, by what factor does the area of that shape increase.
30) Find the cartesian equation of the locus
$|z-2|=|z+6|$ in the form $x=a$.
31) The number a such that $\sum_{r=1}^{n} r^{2}=\frac{1}{a} n(n+1)(2 n+1)$.
32) 40 subtracted from the imaginary part of $(3+2 i)^{3}$.
33) The y solution of the linear system
$\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right)\binom{x}{y}=\binom{24}{18}$.
34) The real root of $p(x)=x^{3}-12 x^{2}+61 x-150$.
35) The imaginary part of the number z such that $z^{2}=-27+36 i$ where z lies in the positive quadrant.
36) Consider the linear transformation $x^{\prime}=6 x+18 y$, $y^{\prime}=3 x+4 y$. Represent this transformation by the
matrix A, what is the entry $A_{2,1}$?
37) The denominator of $\operatorname{cosech}(\ln (3))$.
38) Find the equation of the vertical asymptote of the rational function $y=\frac{x+1}{x-3}$ in the form $x=a$.
39) Find the y-coordinate of the point that is mapped to $\binom{203}{106}$ by the transformation matrix $T=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
40) \quad Let $A=\left(\begin{array}{cc}3 & 1 \\ 11 & 4\end{array}\right)^{-1}$. Find $A_{2,2}$.
41) The square of the largest eigenvalue of the matrix $A=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$.
42) The value a such that $\frac{25}{-\mathrm{i}}=a$ i.
43) Write the ellipse $4 x^{2}+10 y^{2}=100$ in the standard form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. What is a^{2} ?
44) Let $B=\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)\left(\begin{array}{cc}10 & 1 \\ 5 & 2\end{array}\right)$. Find $B_{1,1}$.
45) The square of the denominator of the fraction obtained when evaluating $\cosh (\ln (5))$.
46) The absolute value of the real part of the solutions to the equation $z^{2}-200 z+10625$.
47) If an enlargement of scale factor 10 is applied to a shape, then what is the determinant of the matrix representing the transformation?
48) Find the x-coordinate of the point that is mapped to $\binom{203}{106}$ by the transformation matrix $T=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
49) Find the determinant of the matrix A^{2} where
$A=\left(\begin{array}{ll}4 & 3 \\ 2 & 4\end{array}\right)$.
50) The number a where
$\left[10\left(\cos \left(\frac{\pi}{4}\right)+\mathrm{i} \sin \left(\frac{\pi}{4}\right)\right)\right]^{2}$ is expressed in
the form a i.
51) a such that $\left(\begin{array}{cc}3 & 17 \\ 2 & 5\end{array}\right)+\left(\begin{array}{cc}15 & 2 \\ 1 & 9\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
52) The number n such that $\sum_{r=1}^{n} r=171$.
53) 14 more than the y-coordinate for the maximum point of the rational function $y=\frac{x^{2}+6 x+9}{x^{2}+3 x+3}$.
54) Find $\frac{(2+3 \mathrm{i})^{2}}{1+\mathrm{i}}$ in the form $\frac{p}{q}+\frac{r}{s} \mathrm{i}$. Find $r+1$.
55) Find the determinant of the matrix $\left(\begin{array}{ccc}-2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1\end{array}\right)$.
56) Find a such that $r^{2}(r+1)^{2}-r^{2}(r-1)^{2}=a r^{3}$. Use this and the method of differences to prove $\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$.
57) The square of the denominator for x such that $\operatorname{artanh}(x)=\ln (\sqrt{3})$.
58) The vertical asymptotes of $\frac{x^{2}+3 x+1}{x^{2}-104 x+400}$ are $x=a$ and $x=b$ where $b>a$. Find a.
59) Use dimensional analysis to find the dimensions of the spring constant k in Hooke's Law, $T=k x$ (T is tension, x is extension). Multiply the absolute value of the non-unity power in the dimensional expression by two.
60) Consider the linear transformation $x^{\prime}=6 x+18 y$, $y^{\prime}=3 x+4 y$. Represent this transformation by the matrix A, what is the entry $A_{2,2}$?
