A-Level Maths Calculated Colouring Christmas 2023

1) The largest positive solution of $x^{2}-10 x+24=0$
2) The x-coordinate of the midpoint of $A B$ where $A(2,4)$ and $B(10,2)$
3) The radius of $x^{2}-6 x+y^{2}-8 y-11=0$.
4) The y-intercept of the line between $(-6,4)$ and $(6,8)$.
5) The gradient of $y=\frac{2}{3} x^{3}+2 x^{2}$ at $x=1$.
6) The x-coordinate of the centre of the circle $(x-3)^{2}+(y-2)^{2}=4$
7) The coefficient of the x^{2} in $(2+4 x)^{n}$ is 96 . Find n.
8) $\sqrt{9}$
9) $\frac{x^{2}+5 x+6}{x^{2}+7 x+10}$ can be written in the form $\frac{x+a}{x+b}$. Find a.
10) The x solution of the simultaneous equations $7 x+2 y=29$ and $2 x+y=10$.
11) Find a such that $\sqrt{1875}=a \sqrt{3}$
12) Find the y-coordinate of the turning point of the quadratic $y=x^{2}+10 x+50$
13) The radius of the circle $x^{2}-4 x+y^{2}-2 y-20=0$.
14) The y-coordinate of greatest magnitude from the intersections of the line $y=-x+4$ and the circle $x^{2}-4 x+y^{2}-2 y-20=0$
15) The denominator when you rationalise $\frac{4}{\sqrt{5}}$
16) The area of the triangle formed by the line
$4 x+9 y=36$, the x-axis and the y-axis.
17) A triangle has side lengths $4 \sqrt{3}$ and 6 with the angle subtended between them being 60°. Find the area of the triangle.
18) $\sqrt[4]{104976}$
19) The y-intercept of the line parallel to $x+3 y=40$ which passes through the point $(18,12)$
20) The power of 2 in the prime factorisation of 1440.
21) The y-solution of the simultaneous equations $7 x+2 y=29$ and $2 x+y=10$.
22) The x-intercept of the line perpendicular to the line $y=-\frac{5}{2} x+\frac{61}{2}$ which passes through $(13,-2)$.
23) The product of the roots of the polynomial $p(x)=x^{3}-8 x^{2}+21 x-18$.
24) The largest (in magnitude) x-coordinate of the points of intersection of the circle $x^{2}-18 x+y^{2}=0$ with the x-axis.
25) The value of $\binom{4}{1}+\binom{4}{3}+\binom{5}{2}$ where $\binom{a}{b}$ means " a choose b ".
26) Find the tangent to the circle $(x-2)^{2}+(y-1)^{2}=25$ at $(5,5)$. Give your answer in the form $a x+b y=c$. you want the value of a.
27) The denominator when you rationalise $\frac{4}{4+\sqrt{10}}$.
28) Given that $p(2)=8$ for $p(x)=x^{3}+a x-6$, find the value of a.
29) The discriminant of the quadratic $x^{2}+7 x+6$.
30) A triangle is right angled and has integer side lengths. Given that two sides have lengths 7 and 24 respectively find the other side length.
31) The gradient of the line joining $(1,2)$ to $(4,20)$.
32) The absolute value of the repeated solution of $x^{2}+12 x+36=0$.
33) The real valued solution of $2^{6}=4^{x}$.
34) Find a such that
$(x-a)(x+2)(x-1)=x^{3}-2 x^{2}-5 x+6$.
35) The number of intersection points of the circle $(x-2)^{2}+y^{2}=36$ and the parabola $y=x^{2}-9 x+9$.
36) Given that $(x+2)$ and $(x+5)$ are both factors of $x^{3}+a x^{2}+31 x+b$. Find one tenth of b.
37) The x-coordinate of the turning point of the quadratic $y=x^{2}-6 x+3$.
38) Find k such that the point $(7,12)$ lies on the circle $(x-k)^{2}+(y-k)^{2}=25$.
39) The intersection point of the line $x+a y=34$ and $y=x+6$ is $(4,10)$. Find a.
40) Express the real solution to $5^{2 x}+5^{x}-12=0$ in the form $x=\frac{\ln (a)}{\ln (b)}$. Find a.
41) The area of the triangle formed from the points $A(5,2)$, $B(6,5)$ and $C(9,4)$.
42) Evaluate $\left(\frac{1}{5}\right)^{-2}$.
43) $78125^{\frac{2}{7}}$
44) The remainder on dividing $p(x)=x^{3}+5 x^{2}+2 x+10$ by $(x+2)$.
45) The square pf the radius of the circle $x^{2}+6 x+y^{2}-4 y-5=0$.
46) Find a such that $\sqrt{27}+2 \sqrt{108}-\sqrt{300}=a \sqrt{b}$.
47) The x-coordinate of the local minimum of $y=2 x^{3}-9 x^{2}-60 x+5$
48) The x-coordinate of the intersection point of the line $y=-x+8$ and the line which passes through $A(-2,-4)$ and $B(7,8)$.
49) Find $x+y$ where x and y are the solutions to the simultaneous equations $4 x-y=5$ and $9 x+2 y=24$.
50) Simplify $\frac{3 x^{2}+24 x+45}{x^{3}+13 x^{2}+55 x+75}$. What is the only number on the denominator?
51) For x and y found in question 49 calculate $3 x+4 y$.
52) The number n such that $\sum_{r=1}^{n} r=171$.
53) One third of the coefficient of the x^{2} term in the expansion of $(1+3 x)^{4}$.
54) The absolute value of the y-intercept of the tangent to $y=x^{3}-4 x-2$ at $(2,-2)$.
55) Find the radius of the circle
$x^{2}-14 x+y^{2}+8 y-560=0$.
56) The solution y to the simultaneous equations
$2 x+y+3 z=27, x+3 y+2 z=23$ and
$3 x-2 y+4 z=28$.
57) The point $(6,2)$ lies on the line $4 x+a y=34$. Find a.
58) Find the y-coordinate of the turning point of the
quadratic $y=x^{2}-6 x+27$.
59) The value of z found in question 56.
60) The x-coordinate of the turning point of the quadratic $y=x^{2}-6 x+27$.
