The mean value of $f(x) = 2x^2 + x$ over the interval [a,8] is 61. Find a.

Find the 2×2 matrix transformation that represents a rotation of 90° anticlockwise about the origin.

Prove by induction

$$\sum_{r=1}^{n} r(r^2 + 3) = \frac{1}{4}n(n+1)(n^2 + n + 6)$$

Find the turning points of the rational

$$y = \frac{x^2 + 5x + 6}{x^2 + 7x + 6}$$

Use calculus to find the shortest distance between the point (1,3,2) and the line with equation

$$\mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$$

The cubic $3x^3 + ax^2 + bx + 4$ has roots α , β and γ . Find

- 1) $\alpha + \gamma + \beta$ 2) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

Using Q2 sketch $y = \frac{x^2 + 5x + 6}{x^2 + 7x + 6}$ fully. Indicate any asymptotes and

intersections with the axes.

Prove that $(AB)^{-1} = B^{-1}A^{-1}$

Find the cartesian equation of the loci |z - 2 + 3i| = 3.

Sketch the locus of points satisfying |z - 4i| = |z + 3|

Draw the graph $r = 1 - 3\sin(\theta)$, $0 \le \theta < 2\pi$.

Use standard results to evaluate

$$\sum_{r=1}^{20} r^3 + 2r^2 - r$$

Solve the inequality $\frac{3}{x+2} \le \frac{1}{x-4}$