

Do Now

1) Find the exponential form and modulus argument form of the complex number $2+3 \mathrm{i}$.
2) \quad Find $\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{2}$
3) Find the square root of $-28+96 \mathrm{i}$

nth Roots of a Complex Number

Let z be a complex number and w also be a complex number. Then if n is a positive integer the equation $z^{n}=w$ has distinct solutions.

For the examples we are going to make use of the fact that

$$
\begin{aligned}
z & =r(\cos (\theta)+\mathrm{i} \sin (\theta)) \\
& =
\end{aligned}
$$

Example

a) Solve the equation $z^{3}=1$
b) Represent the solutions from (a) on an Argand diagram.
c) Show that the cube roots of 1 can be written as $1, \omega$ and ω^{2} where $1+\omega+\omega^{2}=0$

Example

Solve the equation $z^{4}=8 \sqrt{3}+8 i$

Exercise

1) Find the fifth roots of unity.
2) Solve $z^{3}-27=0$
3) Solve the equation $z^{4}-\frac{75}{2}-\frac{81 \sqrt{3}}{2} \mathrm{i}=3$.

A-Level Further Mathematics
4) Solve the equation $1+z+z^{2}+z^{3}+z^{4}+z^{5}=0$.

Hint: The sum of a geometric series will be useful here.

