AQA AS-Level Mathematics Warmup - Paper 1 2022

Find the centre and radius of the circle $x^{2} + 6x + y^{2} - 10y - 2 = 0$	What are the two main trigonometric identities?	Find $\frac{dy}{dx}$ for $y = \sqrt{x} (x^2 + 3x)$	Given that v(t) = 2t(t + 1), and x(0) = 4 find the displacement $x(t)$ and the acceleration $a(t)$.	Expand $(3+2x)^4$
Simplify $3 \log_{10} (x^3 y^2) - 2 \log_{10}(xyz) + \log_{10}(z^4)$	Show that $(x - 5)$ is a factor of $p(x) = x^3 + x^2 - 22x - 40$	What impact does modelling a pulley as being smooth have?	Find the stationary points of the curve $y = 2x^3 - 3x^2 - 12x + 4$	What quantities can you find from a velocity-time graph?
The graph shows $y = sin(x)$. Sketch y = sin(2x), y = sin(x) + 1 and $y = sin(x - 45^\circ)$.		Find the equation of the tangent and normal to $y = (2x + 1)^2(x + 3)$ at $x = -1$	The graph shows $y = \frac{1}{5}(x+5)(x+3)(x-2)$	4 2 2
		What are the small angle approximations?		

AQA AS-Level Mathematics Warmup - Paper 1 2022 Solutions							
Radius = 6 Centre = $(-3,5)$	$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$ $\sin^2(\theta) + \cos^2(\theta) = 1$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\sqrt{x}\left(5x+9\right)$	$x(t) = 2\left(\frac{t^3}{3} + \frac{t^2}{2}\right) + 4$ $a(t) = 4t + 2$	$81 + 216x + 216x^2 + 96x^3 + 16x^4$			
$\log_{10}\left(x^7y^4z^2\right)$	p(5) = 0 so by the factor theorem $(x - 5)$ is a factor of $p(x)$. p(x) = (x - 5)(x + 2)(x + 4)	The tension in the string either side of the pulley will be the same.	(-1,11) is a local maximum. (-16,2) is a local minimum.	Displacement is the area undertake curve. The gradient is the acceleration.			
		tangent: $y = -7x - 5$ normal: $-x + 7y = 15$	<u>407</u> 20				
		$sin(\theta) = \theta$ $cos(\theta) = 1 - \frac{\theta^2}{2}$ $tan(\theta) = \theta$					

AQA AS-Level Mathematics Warmup - Paper 1 2022 Solutions