AQA AS-Level Mathematics Warmup - Paper 12022

Find the centre and radius of the circle $x^{2}+6 x+y^{2}-10 y-2=0$ What are the two main trigonometric identities?	$\begin{aligned} & \text { Find } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { for } \\ & y=\sqrt{x}\left(x^{2}+3 x\right) \end{aligned}$	Given that $v(t)=2 t(t+1)$, and $x(0)=4$ find the displacement $x(t)$ and the acceleration $a(t)$.	Expand $(3+2 x)^{4}$
Simplify Show that $(x-5)$ is a $3 \log _{10}\left(x^{3} y^{2}\right)-2 \log _{10}(x y z)+\log _{10}\left(z^{4}\right)$ factor of $p(x)=x^{3}+x^{2}-22 x-40$	What impact does modelling a pulley as being smooth have?	Find the stationary points of the curve $y=2 x^{3}-3 x^{2}-12 x+4$	What quantities can you find from a velocity-time graph?
The graph shows $y=\sin (x)$. Sketch $y=\sin (2 x), y=\sin (x)+1$ and $y=\sin \left(x-45^{\circ}\right)$.	Find the equation of the tangent and normal to $y=(2 x+1)^{2}(x+3)$ at $x=-1$ What are the small angle approximations?	The graph shows $y=\frac{1}{5}(x+5)(x+3)(x-$	

AQA AS-Level Mathematics Warmup - Paper 12022 Solutions

$\begin{array}{\|l\|l} \hline \text { Radius }=6 & \tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)} \\ \text { Centre }=(-3,5) & \sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \end{array}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \sqrt{x}(5 x+9)$	$\begin{aligned} & x(t)=2\left(\frac{t^{3}}{3}+\frac{t^{2}}{2}\right)+4 \\ & a(t)=4 t+2 \end{aligned}$	$81+216 x+216 x^{2}+96 x^{3}+16 x^{4}$
$\log _{10}\left(x^{7} y^{4} z^{2}\right) \quad \left\lvert\, \begin{aligned} & p(5)=0 \text { so by the } \\ & \text { factor theorem }(x-5) \\ & \text { is a factor of } p(x) . \\ & p(x)=(x-5)(x+2)(x+4) \end{aligned}\right.$	The tension in the string either side of the pulley will be the same.	$(-1,11)$ is a local maximum. $(-16,2)$ is a local minimum.	Displacement is the area undertake curve. The gradient is the acceleration.
	tangent: $y=-7 x-5$ normal: $-x+7 y=15$ $\begin{aligned} & \sin (\theta)=\theta \\ & \cos (\theta)=1-\frac{\theta^{2}}{2} \\ & \tan (\theta)=\theta \end{aligned}$	$\frac{407}{20}$	

